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Précis to a Practical Unified Theory of

Cognition and Action: Some Lessons from
EPIC Computational Models of Human
Multiple-Task Performance

David E. Meyer and David E. Kieras

ABSTRACT  Experimental psychology, cognitive science, and human-factors engineering have
progressed sufficiently far that a practical unified theory of cognition and action is now foresee-
able. Such a theory soon may yield useful quantitative predictions about rapid human multiple-
task performance in applied settings. Toward this end, an executive-process interactive control
(EPIC) architecture has been formulated with components whose assumed properties emulate
fundamental perceptual, cognitive, and motor processes. On the basis of EPIC, a theorist may
construct detailed computational models that characterize multiple-task performance under both
laboratory and real-world conditions. For example, EPIC computational models provide good
accounts of response latencies and accuracy from the psychological refractory-period procedure,
aircraft cockpit operation, and human-computer interaction. As a result, major commonalities in
performance across various task domains have been discovered, and useful heuristic principles
for designing person-machine interfaces have been identified. The substantive and methodologi-
cal lessons learned from these advances constitute an instructive précis to further utilitarian
theoretical unification.

Like the quest of Indiana Jones, the adventurous anthropologist in Raiders of
the Lost Ark (Kasdan, Lucas, and Kaufman 1981), our journey to the Holy
Land for Attention and Performance XVII has brought us in search of an
alluring mystical treasure. The treasure we seek is a unified theory of cogni-
tion and action through which human performance can be understood and
predicted in a variety of contexts, spanning elementary laboratory para-
digms and complex real-world situations. Although not so sacred as the Lost
Ark of the Covenant, such a theory would have great value for both applied
psychological science and the present volume. By design, this volume con-
cerns the cognitive regulation of human performance, with.special emphasis
on interactions between theory and practical applications. Ultimately, these
interactions and future progress from them will grow best if researchers suc-
ceed at constructing a coherent conceptual framework in which scientific
knowledge is synthesized about several complementary topics, including
goal-directed behavior, top-down supervisory executive processes, perfor-
mance strategies, attentional control mechanisms, and conscious appraisal of
the world. As one kindred seeker enthusiastically proclaimed: “There is
nothing more practical than a good theory” (Gopher and Koriat, chap. 1, this
volume).!
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Moving onward with such enthusiasm, we start by reviewing prior devel-
opments that have paved the way toward our formulating a unified theory
of cognition and action. On the basis of these developments, we introduce a
functional architecture to emulate fundamental characteristics of the human
information-processing system. Next, using this architecture, we construct
illustrative computational models to account for observed aspects of multiple-
task performance in typical laboratory paradigms and real-world situations.
From these accounts, we derive some instructive lessons with respect to
how further attempts at theoretical unification should proceed. Although the
chapter does not end with a complete, veridical unified theory, it does pro-
vide some guidance toward this objective (see also, Kieras and Meyer 1995,
forthcoming; Kieras, Wood, and Meyer 1997; Meyer and Kieras 1994,
1997a, 1997b, Meyer et al. 1995).

2.1 HISTORICAL BACKGROUND

Our efforts toward formulating a unified theory of cognition and action have
been inspired by several prophets of experimental psychology, cognitive
science, and human-factors engineering. Among them, an especially note-
worthy sage was the late Allen Newell, who, nearly a quarter century before
Attention and Performance XVII, published a provocative chapter entitled
“You Can't Play 20 Questions with Nature and Win” (Newell 1973a).
Newell's thesis was that experimental psychology has neglected to take
sufficient stock of the big theoretical picture, thereby hindering cumulative
scientific progress in the study of mind and behavior. As Newell saw it, too
much effort had been expended on conducting narrow empirical studies to
test seductively simple binary hypotheses (e.g., early versus late attentional
selection, serial versus parallel memory search, and imaginal versus proposi-
tional knowledge). Indeed, such studies have accumulated an impressively
large collection of basic facts, on the order of 3,000 “good quantitative reg-
ularities” (e.g., see Atkinson et al. 1988; Boff, Kaufman, and Thomas 1986;
Meyer and Kornblum 1993), but how they all fit together theoretically re-
mains a “great psychology data puzzle” (Newell 1992).2 There are still no
general theories that have adequate practical utility across many domains of
application. Instead, what psychological theorizing has produced thus far is a
set of unrelated micromodels that are relevant only to separate small families
of empirical phenomena in limited artificial contexts.

Characteristics of Unified Theories

To go beyond these confines, Newell (1990, 1992) and his colleagues (e.g.,
Card, Moran, and Newell 1983; Laird, Newell, and Rosenbloom 1987) have
advocated the development of unified theories of cognition (UTCs). An ideal
UTC would postulate “a single system of mechanisms that operate together
to produce the full range of human cognition” (Newell 1990, 1). The moti-
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vation for this approach was summarized in Newell’s original chapter on the
futility of simply playing twenty questions with nature: “Our task in psy-
chology is first to discover the invariant structure of processing mecha-
nisms. ... Without such a framework in which to work, the generation ... of
new explanations for old phenomena will go on ad nauseurn” (Newell 1973a,
293, 296).

As envisioned by Newell, the systems on which UTCs are conceptually
based should have detailed information-processing architectures with set
interconnected components that implement elementary symbolic computa-
tional processes for perception, cognition, and action. A complete UTC’s
architecture ought to be sufficiently powerful that programs executed by it
can accurately simulate covert mental processes and overt behavior associated
with learning, memory, perceptual-motor skills, language comprehension, :
decision making, problem solving, and other complex functions. In Newell’s
opinion (1990, 1992), more than enough empirical data are available now
for starting to formulate UTCs—experimental psychology and cognitive
science must make theoretical unification be an immediate, principal goal.’
Some prominent contributors to past Attention and Performance symposia -
have also called for such unification:

What is urgently needed is ... a computational theory, in the sense outlined
by Marr (1982), of the many different functions of attentional selectivity and
control ... taking seriously the idea that attentional functions are of many
different kinds, serving a great range of different computational purposes
(Allport 1993, 205-206).

We need computational theories of interaction between stages. As the num-
ber of theoretical entities increases in each area, it becomes increasingly hard
to see the implications of combining them. Only computational systems can
do this, and they will have the merit of stopping the laxness of definition

~ noted by Allport (Broadbent 1993, 876).

Indeed, UTCs may provide numerous complementary benefits, which in-
clude amortization of theoretical constructs, integration of multiple empirical
constraints, maximization of process identifiability, solution of irrelevant-
specification problems, absolution from Popperian damnation, amplification
of scientific progress, and promotion of practical applications (Newell 1990,
18). By combining extant theoretical constructs from diverse sources into
one integrated framework, 2 UTC repays debts owed to past sponsors of
experimental psychology. The prospective payoff is enhanced because UTCs
account for a wide variety of data whose overall pattern imposes multiple
empirical constraints on functional properties that a theory’s mechanisms
must have. In essence, this maximizes process identifiability and helps clarify
what canonical assumptions are most appropriate. Given maximum process
identifiability, the theorist can forgo appending “Rube Goldberg kludges” as
part of the system, thereby solving irrelevant-specification problems (i.e.,
haphazard postulation of arbitrary components that contribute to explana-
tions in an unprincipled fashion).
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As a result, there may come absolution from Popperian damnation, that is,
forgiveness for having proposed simple binary hypotheses with which aber-
rant bits of data are inconsistent (cf. Popper 1959). Such absolution can facil-
itate scientific progress; no longer will it be necessary to formulate, test,
reject, and reformulate simple theoretical alternatives repeatedly in an end-
less karmic birth-death cycle of the same old hypotheses.> Through the
progress that UTCs enable, they can be taken into the field for useful practi-
cal applications. “A unified theory of cognition is the key to successful ap-
plied cognitive science” (Newell 1990, 498). This follows because important
real-world tasks engage many aspects of cognition, and effective behavior
under such circumstances depends on interactions among many information-
processing components; thus, successful applications must treat all of these
components in an integrated fashion.*

Furthermore, the connection between application and theoretical unifica-
tion should be taken as a two-way street. While UTCs lead to useful appli-
cations, serious concern about practical applications can foster substantial
theoretical development and unification. “Applications,” Newell (1990, 501—
502) tells us, “are critical for the internal conduct of the science. They estab-
lish what is worth predicting. They establish what accuracy is sufficient.
They establish when a regularity is worth remembering. They establish
when a theory should not be discarded. ... Applications have a wisdom that
the current fashions of theory do not.” Mindful of these words and also
those spoken by John F. Kennedy, we therefore should ask not just what
unified theories of cognition can do for applications, but also what applica-
tions can do for cognitive theories Newell 1990, 500).5

Harbingers of Unified Theories

Since Newell’s original manifesto (1973a), no complete veridical UTC has
been developed. Nevertheless, some promising harbingers of theoretical uni-
fication have appeared on the scene (for a comparative review and evalua-
tion, see Newell 1990, 23—36). These include the model human processor of
Card, Moran, and Newell (1983), the ACT* system of J. R. Anderson (1983),
and the SOAR system of Newell (1990, 1992) and his colleagues (Laird,
Newell, and Rosenbloom 1987).6

Model human processor The model human processor (MHP) was devel-
oped specifically for applications to human-computer interaction (HCI). To
predict the speed and accuracy of people’s performance during HCI tasks
such as text editing, Card, Moran, and Newell (1983) endowed the MHP
with a combination of general-purpose memory stores and processing
units whose functional characteristics approximated those of the human
information-processing system. Among the MHP’s memory stores are a short-
term working memory and a long-term declarative memory. They involve
putative information codes, storage capacities, and durations consistent with
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generic data available at the time of the MHP's formulation. Complementing
these memory stores, among the MHP's processing units are perceptual,
cognitive, and motor processors. The assumed durations of their operations
have magnitudes consistent with previously estimated times taken by stages
of processing such as stimulus encoding, response selection, and movement
production (cf. Sanders 1980; Sternberg 1969). Through integrating the
processing units and memory stores of the MHP in a “boxes and arrows”
flowchart, acceptably accurate “engineering approximations” of response
speed and accuracy across a variety of HCI tasks were obtained by Card,
Moran, and Newell (1983).7 At the time, their success demonstrated that
substantial data from numerous areas of experimental psychology are indeed
available for taking significant strides toward utilitarian theoretical unification.

Nevertheless, the scope of the MHP is seriously limited. For example, its
perceptual and motor processors do not embody all important characteristics
of information processing in the visual, auditory, tactile, ocular, articulatory,
and manual modalities. Also, the cognitive processor and working memory
of the MHP do not enable computer simulations of human performance with
observable outputs under diverse task conditions; that is, Card, Moran, and
Newell (1983) did not go much beyond the boxes-and-arrows phase of
theory development. As a result, the MHP lacks crucial features that a
complete veridical UTC should have.

ACT* In some respects, the ACT* system (Anderson 1983), which evolved
from Anderson and Bower’s human associative memory (HAM; 1973) model
and Anderson’s ACT system (1976), is more complete and precise than Card,
Moran, and Newell’'s MHP (1983). For ACT*, Anderson (1983) distinguished
explicitly between procedural and declarative knowledge. Pursuing this dis-
tinction, he embodied procedural knowledge in ACT* as a formal production
system under which various tasks could be performed through sets of pro-
duction (if condition, then action) rules. The development of ACT* honored
Newell's prior suggestion (1973b) that production systems would help
construct more complete models of human information processing. ACT"'s
production system has a rule interpreter with well-defined properties (e.g.,
conflict-resolution criteria). Through this interpreter, the conditions of speci-
fied production rules are compared to the current contents of working mem-
ory, and the rules’ actions are executed contingent on the outcomes (matches
or mismatches) of these comparisons.

Assumed details of the ACT” rule interpreter, working memory, and other
ancillary components enabled Anderson (1983) to account for reaction time
(RT) and accuracy data from comprehension and reasoning tasks. Further-
more, with algorithms for compiling and tuning procedural knowledge, phe-
nomena of cognitive-skill acquisition (e.g." the power law of practice; Fitts
1964) are explained by ACT".2 Thus ACT* has more inherent potential than
does the MHP to enable computer simulations and to become a bona fide
UTC.
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Yet ACT" also has significant limitations. No serious treatment of ocular,
manual, and articulatory motor control is included thus far as part of the
ACT" architecture. Nor have initial applications of ACT* dealt extensively
with complex problem solving of the sort addressed previously by Newell
and Simon’s general problem solver (GPS; 1972). Instead, Anderson (1983)
focused mainly on cognitive processes of learning, memory, language com-
prehension, and inference.

SOAR The gaps left by ACT* and the MHP lead us to the SOAR system
of Newell (1990, 1992) and his colleagues (e.g., Laird, Newell, and Rosen-
bloom 1987). SOAR surpasses these prior harbingers of a UTC by incor-
porating more detailed assumptions about perceptual-motor and attentional
processes in the context of a production-system architecture. Also, extend-
ing the approach taken before in GPS (Newell and Simon 1972), an explicit
characterization of complex impasse-driven problem solving has been
embodied in SOAR's repertoire of cognitive mechanisms. Through an
opportunistic “chunking” algorithm, impasses that arise during novel task
performance are resolved by SOAR via a heuristic search of problem spaces.
The “chunking” algorithm yields new procedural operators that enable -
automatized perceptual-motor and cognitive skill (cf. Anderson 1983;
Schneider and Detweiler 1988; Shiffrin and Schneider 1977). As a result,
phenomena at various levels of complexity, including automatic active-
memory search, the power law of practice, and means-ends problem solving
are treated within SOAR's purview.

Nevertheless, there is still more to the story of human performance than
SOAR accommodates. SOAR's components for implementing simulations of
ocular, manual, and articulatory motor control remain less well developed
than would be desirable. Given this lack of development, interactions be-
tween perception and motor control are not yet characterized sufficiently in
SOAR. Nor does SOAR have much to say thus far about multiple-task per-
formance. Many questions remain to be answered as part of formulating a .
unified theory of cognition and action. What executive processes allocate
limited perceptual-motor and cognitive resources for scheduling two or more
concurrent tasks while satisfying task priorities imposed by prevailing envi-
ronmental constraints? How do executive processes and skilled performance
based on them evolve through transformations of declarative to procedural
knowledge? Why might individual performers differ systematically with re-
spect to the types of executive process and degrees of task coordination that '
they achieve?

2.2 PRESENT OBJECTIVES

The objectives of the present chapter are to foster further theoretical unifica-
tion in the scientific study of human performance and, concomitantly, to help
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answer some of the questions mentioned previously. To do so, we sub-
sequently introduce a functional architecture for emulating basic character-
istics of human information processing. Qur architecture is called “EPIC,”
which stands for “executive-process interactive control.” Although EPIC does
not yet constitute a complete veridical UTC, it supplements prior theories in
some significant ways. EPIC enables not only procedural cognition but also
motor control and perceptual-motor interactions to be treated explicitly and
parsimoniously in conjunction with formal hypotheses about supervisory
executive cognitive processes and task-scheduling strategies. Given such
treatment, precise computational models can be constructed to explain and
predict reaction times (RTs), response accuracy, and other measurable aspects
of people’s overt behavior across various domains where multiple tasks must
be performed concurrently. Our EPIC computational models are applicable
to both elementary laboratory paradigms and complex real-world situations.
Such applications yield instructive lessons for future work toward theoretical
unification in studies of human performance. The transfer of data and theory
from laboratory to real world may proceed more quickly by ‘taking these
lessons seriously.

Relevance of Multiple-Task Performance

Multiple-task performance under speed stress, a traditional topic of experi-
mental psychology (Meyer and Kornblum 1993), offers an especially relevant
venue for developing UTCs. In accord with Newell’s terminology (1990,
1992), this topic involves studying immediate behavior, that is, responses to
stimuli during brief tasks whose performance yields reaction times on
the order of 100 msec < RT < 1,000 msec. Along the overall time scale of
human action, the mental processes that mediate such responding fall in the
lower part of what Newell has called the “cognitive band”.? Here fundamen-
tal symbolic computations are accomplished to access information in various
memory stores, make elementary decisions, store intermediate products tem-
porarily, and execute input-output transformations.1°

Centrality of the cognitive band Newell (1990, 1992) has argued that
the types of computation done in the cognitive band are fundamental to all
intelligent information processing. From the perspective of this argument,
RTs for immediate behavior manifest the durations of these computations
directly, revealing the nature of the functional architecture that implements
them. Any hypothesized architecture must be consistent with available RT
data, which impose a strong real-time constraint on UTCs. By taking such
data thoroughly into account, as focusing on rapid multiple-task performance
leads us to do, we may arrive more quickly at detailed specifications for a
complete veridical UTC. Thus, during the initial development of SOAR's
architecture, Newell (1990, 1992) and his colleagues (e.g.. John 1988; John and
Newell 1987, 1989; John, Rosenbloom, and Newell 1985) made concerted
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efforts to ensure that it was consistent with known facts about stimulus-
response compatibility (cf. Duncan 1977; Fitts and Seeger 1953; Kornblum,
Hasbroucg, and Osman 1990), active-memory scanning (cf. Sternberg 1969),
and transcription typing (cf. Salthouse 1986), which typify systematic empir-
ical phenomena related to immediate behavior. Similar attempts have been
made by other progenitors of UTCs (e.g., Anderson, 1983, 1990, 1993), al-
though they do not go as far as EPIC on this score.

Availability of reaction time data In light of these considerations, stu-
dents of rapid human performance are well situated for contributing to the
further development of UTCs. Through techniques of mental chronometry
(Donders, 1868; Luce 1986; Meyer et al. 1988; Miller 1988; Roberts and
Sternberg 1993; Sanders 1980; Sternberg 1969; Woodworth and Schlosberg
1954), large amounts of RT data that are relevant to immediate behavior
have been collected. Much of the available data bear on selective attention
(e.g., Eriksen and Yeh 1985; Jonides 1980; Jonides and Yantis 1986; Posner
1980; Treisman 1988; Yantis and Jonides 1986), motor control (e.g., Abrams
and Jonides 1988; Fischer and Ramsberger 1984; Ghez, Hening, and Favilla
1990; Meyer and Gordon 1985; Reuter-Lorenz, Hughes, and Fendrich 1991;
Rosenbaum 1980; Sternberg et al. 1978), perceptual-motor interaction (e.g.,
Rosenbaum 1991), and coordination of information-processing operations in
multiple-task performance (e.g, Damos 1991; Gopher and Donchin 1986;
Meyer and Kieras 1997a,b). This “grist for the mill” is exactly what we need
to specify the details of prospective UTCs’ functional architectures.

Importance of practical needs With respect to meeting important practi-
cal needs, the study of human performance could use more theoretical unifi-
cation. Multiple tasks must be performed rapidly and accurately in many -
important real-world situations such as HCI, aircraft cockpit operation, air-
traffic control, automobile cellular-telephone communication, power-plant
supervision, and so forth. Advances in our understanding of performance -
under such circumstances are required so that the design of person-machine
interfaces, selection of personnel, and training for successful equipment usage
may be facilitated. This facilitation would enhance productivity and reduce
the frequency of disasters such as those involving Three Mile Island and the
naval cruiser Vincennes.

Inadequacy of current frameworks Unfortunately, the ‘general-purpose
theoretical frameworks being used currently in applications to real-world
situations where multiple-task performance plays important roles are less
than fully adequate. These frameworks include the SAINT (Chubb 1981) and
HOS (Lane et al. 1981; Harris et al. 1987) modeling systems. Although con-
stituting valuable assessment tools, they do not enable precise computer sim-
ulations of complex multiple-task performance nor do they have the flexibility
and generativity for a wide variety of applications (cf. O'Donnell and Egge-
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meier 1986; Sanders 1991; Vreuls and Obermayer 1985). Much room re-
mains for significant contributions to be made by new UTCs in applied set-
tings. Their ultimate benefits may grow dramatically as future technology
gives human-factors engineers more options for designing efficient user-
friendly person-machine interfaces.

Potential Pitfalls

Of course, one must be vigilant for some potential pitfalls along the way
toward a complete veridical UTC; developing such a theory will not be easy.

Necessity of selection In particular, there is the necessity of selection
(Newell 1990), which poses the theorist with difficult dilemmas. Among the
many extant theoretical concepts about human performance, some must be
included and others excluded from any particular UTC, even though most of
them have persuasive advocates and potential merit. For example, should a
UTC's perceptual processors be equipped with precategorical attentional

filters (cf. Allport 1989; Broadbent 1958; Deutsch and Deutsch 1963; Moray
1959; Norman 1976; Treisman 1960, 1964)7 Should its cognitive processor
have structural decision and response-selection bottlenecks (cf. Allport 1987; .

Allport, Antonis, and Reynolds 1972; Kahneman 1973; Moray 1967; Navon
and Gopher 1979; Neumann 1987; Pashler 1984, 1994a; Welford 1952,
1959, 1967; Wickens 1984)7 Should its motor processors use discrete inde-
pendent movement features (cf. Abrams and Jonides 1988; Ghez, Hening,
and Favilla 1990; Goodman and Kelso 1980; Meyer and Gordon 1985; Rosen-
baum 1980)? The answers to such questions will not always be self-evident.
Depending on what particular assumptions are selected for implementation
in various components of an overall architecture, different prospective UTCs
each may explain many observable aspects of overt behavior quite well,
making it difficult to determine which UTC is most correct.

Turing tar pit Escaping this difficulty is especially problematic because of
the so-called Turing tar pit (Newell 1992). In computational modeling, the
available programming languages for UTCs are all powerful enough to sim-
ulate the same general symbolic transformations and input-output functions
(cf. Turing 1937). Thus, at an abstract level, each UTC may have functional
capabilities similar to those of its competitors, which can make alternative
theories indistinguishable in many respects, thereby trapping theorists in a
conceptual morass. Experimentalists therefore should expett to encounter a
partial nonidentifiability problem when devising empirical tests among com-
peting alternatives.

Degrees-of-freedom problem Closely related to the nonidentifiability

problem and Turing tar pit is the degrees-of-freedom problem (Newell 1990,

1992). By construction, a UTC necessarily has many parameters whose
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values can change from one context to the next. Within and across particular
contexts, the number of “free” parameters may exceed the total degrees of
freedom in available data sets. If so, then the theory will be underdetermined
with respect to the data; good quantitative accounts provided by the theory
will not prove definitively that the theory is apt or informative. In formulat-
ing a UTC, care therefore must be taken to impose principled constraints on
the theory’s potentially free parameters.

Bridges over Troubled Waters
Fortunately, there are a number of supportive heuristic principles for bridg-

ing the troubled waters that must be crossed on the way to a complete
veridical UTC. Some of these principles are especially helpful in overcoming

the necessity-of-selection and degrees-of-freedom problems and the Turing -

tar pit in designing the theory’s functional architecture. Other principles
constrain specific models that may be formulated to perform particular tasks
on the basis of the architecture.

Maintenance of architectural simplicity and stability To overcome the

degrees-of-freedom problem, a UTC's functional architecture should be kept °

as simple and stable as possible. The theorist must refrain from embellishing
the architecture with empirically unsubstantiated, computationally arbitrary,
unnecessarily complex, or seductively vague mechanisms. For example,
initially postulating an immutable structural response-selection bottleneck
(Pashler 1994a; Welford 1959, 1967) or a reservoir of divisible limited
capacity (Kahneman 1973) in the architecture’s cognitive processor seems
inadvisable (Allport 1987; Neumann 1987; Wickens 1991). As Allport (1980,
117-118, 121) forewarned:

Obviously there is a problem of how we know when we are dealing with
competition for a single resource.... Once one accepts the idea of general-
purpose processing capacity [or central bottlenecks] as a working hypothesis,

it becomes temptingly easy to assume, without further ado, that almost any

instance of dual-task interference is a result of competition for this same
general resource, for “attention.”... The theory, at least in its application,
appears to be entirely circular.... The result is a strategy of research that can
do nothing but chase its own tail.... This [strategy] has been singularly

unproductive ... for the discovery of the architectural constraints on concur- -

rent psychological processes.... It merely soothes away curiosity by the ap-
pearance of having provided an explanation, even before the data have been
obtained. ;

Given Allport's provisos, the architecture of a UTC ought to include only
mechanisms that have firm a priori physical or mental grounds, such as those
known to be inherent in either the human body’s sensors and effectors or
intelligent mind's basic computational needs (Newell 1990). Then fewer
degrees of freedom will clutter the theoretical landscape and compromise
assessments about goodness of fit to empirical data.
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Such benefits likewise may accrue through keeping the numerical parame-
ters of the architecture constant insofar as possible. For example, suppose
that in two task contexts, the same stimuli or responses are involved. If so,
then setting the parameters of the architecture’s perceptual-motor processors
to have identical values across both contexts will reduce the degrees-of-
freedom problem considerably. Similar beneficial constraints can be imposed
on the values of cognitive-processor parameters (Meyer and Kieras 1997ab).

Embodiment of perceptual-motor mechanisms As the preceding dis-
cussion also implies, UTCs can gain more power and testability from being
physically “embodied.” If a UTC makes direct contact with the real world
through explicitly represented perceptual and motor mechanisms, then the
theory’s degrees of freedom at a cognitive level are likely to be reduced, and
the Turing tar pit of abstractly conceivable but concretely implausible alter-
native computational algorithms may be circumvented. Again, Allport (1980,
144, 145, 148) has summarized the basic point quite well:

The constraints of the human body set upper limits on the degrees of free-
dom of our physical action. A limb cannot be in two positions at once. We
cannot shift our gaze simultaneously to right and left, nor vocalize two dif-
ferent syllables at the same time.... Certainly, many of the phenomena
attributed hitherto to “attentional” or “general-capacity” limitations can be
seen to depend on situations in which separate inputs compete for or share
control of the same category of action.... It may be that until we have a
better description of what is being done by at least some of the sub-systems,
[other] questions about the overall architecture will just be premature.

A prospective UTC therefore should have an array of well-defined percep-
tual processors for the principal stimulus input modalities, and motor pro-
cessors for the principal response output modalities should be included, too.

Respect for neurophysiological plausibility To be taken seriously, a
prospective UTC must have neurophysiological plausibility as well. Ulti-
mately, whatever architectural components are postulated in the theory
ought to accord with mechanisms in the “biological band” of human infor-
mation processing (Newell 1990, 1992; see also note 10). This requirement
further justifies omitting immutable structural decision and response-selection
bottlenecks in the cognitive processor of the theory’s architecture. Instead,
the architecture should enable substantial asynchronous distributed parallel
information processing (cf. Rumelhart and McClelland 1986). As Neumann
(1987, 362) argued:

[There is no] physiologically established limit on the information that can be
picked up at the same time. Neither are there obvious neurophysiological
grounds for the assumption that dual-task performance is limited by the
hardware properties of the brain. [Instead] there is an immense amount of
parallel computation going on simultaneously in the awake brain (see
Anderson and Hinton 1981; Creutzfeldt 1983); and there are many sub-
systems that integrate information from different sources without an indica-
tion of limited capacity.
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Sensitivity to task demands Another crucial principle for formulating
computational models of multiple-task performance involves being fully sen-
sitive to the logical demands of the tasks at hand. By doing so, the set of
plausible models that can perform the tasks will become considerably smaller
and more well defined. As a result, precise thorough accounts that have min-
imal degrees of freedom may quickly emerge for available data.

For example, we (Meyer and Kieras 1997a,b) have found this with respect
to the psychological refractory-period (PRP) procedure, which entails
performing two discrete RT tasks in rapid succession (Bertelson 1966;
Kantowitz 1974; Pashler 1994a; Smith 1967). Under the PRP procedure,
the instructions to participants typically demand that one task be “primary”
and the other “secondary”; the participants are supposed to produce rapid
accurate primary-task responses before making secondary-task responses.!1
These requirements strongly constrain which models can account for RT
data from the PRP procedure, especially when the models’ architecture has
no inherent structural cognitive response-selection bottleneck. The PRP pro-
cedure mandates that in essence, viable models must emulate such a bottle-
neck at some point during the course of secondary-task performance even
though one would not otherwise be needed.12 By honoring this mandate,
our research has achieved accurate accounts of RT data from not only the
PRP procedure but also other related dual-task paradigms.

Application of GOMS analysis Useful guidance for representing the
logical consequences of procedural instructions and task demands is pro-
vided by GOMS (goals, operators, methods, and selection rules) analysis
(Card, Moran, and Newell 1983; John 1990; John and Kieras 1996; John,
Vera, and Newell 1994; Kieras 1988; Newell 1990). In this analytical tech-
nique, the first step involves identifying and organizing the goals and
subgoals for all present tasks, as dictated by the prevailing physical environ-
ment, instructions about task priorities, and so forth. Next, procedural

methods are formulated so that these goals and subgoals may be achieved. .

As part of this formulation, sequences of operators (i.e, perceptual, cogni-
tive, and motor transformations) are chosen from an inventory provided by
the UTC’s functional architecture. The choice of operators is governed by
explicit selection rules that tailor the operator sequence to be sufficient and
efficient. For example, these rules may invoke the rationality principle (Ander-
son 1990, 1993; Card, Moran, and Newell 1983; Newell 1990), according to

which a system’s operations should have maximum expected utility. We -

have found GOMS analysis to be especially useful in modeling performance
of some relatively complex practical tasks associated with HCI (Kieras and
Meyer forthcoming; Kieras, Wood, and Meyer 1997). In contrast, failure to
apply GOMS analysis may leave the theorist trapped in the Turing tar pit,
for, as Newell (1973a) originally forewarned, “the same human subject can
adopt many radically different methods for the same basic task, depending
on goals, background knowledge, and minor details of payoff structure....
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To predict a subject you must know: (1) his goals; and (2) the task environ-
ment.... [Until these factors are taken into account] we will not be able to
bring the problem of specifying subject’s methods under control” (Newell
1973a, 293, 299, 301).

Compliance with real-time constraint Finally, the functional architecture
of a UTC must comply with the real-time constraint on immediate behavior
(Newell 1990, 1992). People perform elementary tasks through relatively
simple combinations of operations at the lower end of the “cognitive band,”
producing reaction times on the order of 100 msec < RT < 1,000 msec.
Having to describe such rapid performance in terms of mechanisms that also
respect known properties of their underlying neural substrates provides
more signposts for circumventing the Turing tar pit and degrees-of-freedom
problem.

Taxonomy of Lessons

The remainder of this chapter outlines numerous methodological and sub-
stantive lessons we have learned from adhering to the aforementioned heu-
ristic principles for developing a unified theory of cognition and action.
The substantive lessons highlight specific new empirical facts and theoretical
conclusions about the human information-processing system. The method-
ological lessons highlight inherent nuances of the scientific enterprise
whereby UTCs and computational models of multiple-task performance may
be formulated.

Lists of the methodological and substantive lessons appear in Tables 2.1
and 2.2, respectively. So that these lessons might be more memorable, we
adopt the classical pedagogic practice (e.g., Saunders 1757) of expressing
them with brief epigrammatic statements adapted from various familiar
sources. Perhaps by learning about our trials and tribulations, other experi-
mental psychologists, cognitive scientists, and human-factors engineers will
make faster progress toward understanding human multiple-task performance.

For example, three instructive methodological lessons should be apparent
in light of the preceding discourse:

Methodological lesson 1: “Now is the hour” The moment has come to
make more progress toward theoretical unification in the scientific study of
human performance. Ample data and theoretical concepts are available to
support such an advance. Persistent neglect of theoretical  unification will
waste precious resources and postpone utilitarian transfer of theory and data
from the laboratory to practical real-world applications.

Methodological lesson 2: “Reaction time is of the essence” The de-

velopment of complete veridical UTCs will benefit greatly from RT data that
experimental psychology has amassed while studying the performance of
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Table 2.1 Methodological Lessons

Lesson

number  Source of lesson Epigrammatic statement

1 Newell 1973, 1990, 1992 “Now is the hour”

2 Newell 1990, 1992 “Reaction time is of the essence”

3 Newell 1973, 1990, 1992 “No pain, no gain”

4 PRP procedure “Qur cup runneth over”

5 PRP procedure “Expect the unexpected”

6 PRP procedure ~ "Be careful what you ask for; you might actually get it”

7 AEC models? “Average at your own risk”

8 AEC models? “Seek and you shall find; knock and it shall be opened
. unto you”

9 NYNEX study of TAOs®  “Unification enables application”

10 NYNEX study of TAOs®  “Keep your sunny side up”

11 NRL cockpit study* “If you've seen one, you've seen ‘em all”

12 NRL cockpit study< “Be thankful for the Second Golden Rule”

13 Feynman 1985 “Psychological seience can (and will) be fun”

14 Gopher 1996 “There’s nothing more practical than a good theory”

a. See Lauber et al. 1994; Meyer et al. 1995; Meyer and Kieras (1997b); Schumacher et al.
{forthcoming).

b. See Kieras, Wood, and Meyer 1995, 1997.
¢. See Kieras and Meyer 1995, forthcoming.

Table 2.2 Substantive Lessons

Lesson

number  Source of lesson Epigrammatic Statement

1 SRD model* , “Response selection is not like pouring bottled wine”
2 SRD model* “It's difficult to leap before you look”

3 AEC models® » “Variety is the spice of life”

4 AEC models® “Wherever there’s a will, there are ways”

5 AEC modelsb “You can teach young performers new tricks”

6 Schumacher et al. 1997 “Dual-task performers can share and share alike”

7 NYNEX study of TAOs¢  “TAOs know the way”

8 NYNEX study of TAOs®  “What goes around comes around”

9 NYNEX study of TAOs  “Hand movements obey the Boy Scout motto”

10 NYNEX study of TAOs¢  “Practice makes (nearly) perfect”

1 NRL cockpit study< “Daring task scheduling is ‘the right stuff’”

12 NRL cockpit studyd “The eyes have it”

13 NRL cockpit studyd “Covert shifts of visual attention are like poor Yorick” |

a. Based on EPIC computational modeling of mean RTs in Hawkins, R};driguez, and Reicher
(1979).

b. Based on EPIC computational modeling of mean RTs from PRP procedure in Lauber et al.
1994. '

¢. Based on EPIC computational modeling in Kieras, Wood, and Meyer 1995, 1997.

d. Based on EPIC computational modeling in Kieras and Meyer 1995, forthcoming.
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various basic tasks. These data, which impose strong real-time constraints on
a UTC's functional architecture, are abundant and sorely in need of further
integration. Attention and Performance XVII together with other volumes of
this symposium series therefore can play a crucial role in fostering theoretical
unification. '

Methodological lesson 3: “No pain, no gain” Future steps toward com-
plete veridical UTCs will not be easy. Considerable misdirection, stumbling,
and frustration will occur along the way because of the vast current inven-
tory of potentially apt theoretical constructs, the Turing tar pit, the degrees-
of-freedom problem, and other concomitant obstacles, Together, these
hinderances may cause the adventurous theorist considerable fatigue and
suffering, just as many daunting challenges confronted Indiana Jones in his
search for the Lost Ark of the Covenant (Kasdan, Lucas, and Kaufman 1981).
Yet the ultimate prize is worth the hardship; both basic research and practical
applications will benefit enormously from the elegance, integration, expla-
natory power, and predictive capability of a complete veridical UTC. Ulti-
mately, UTCs are the only way to achieve such benefits (Newell 1973a,
1990, 1992).

To provide a more detailed framework for further lessons, we next intro-
duce our EPIC information-processing architecture.

2.3 THE EPIC ARCHITECTURE

Figure 2.1 shows a schematic diagram of EPIC. It consists of interconnected
LISP software modules for symbolic perceptual, cognitive, and motor infor-
mation processing. We have designed these modules to emulate basic com-
ponents of the human information-processing system and to provide a basis
for realistic computational models of multiple-task performance. As acknowl-
edged before, EPIC’s organization builds on previous work by a number of
theorists (e.g.. Anderson 1976, 1983, 1990, 1993; Card, Moran, and Newell
1983; Hunt and Lansman 1986; Laird, Newell, and Rosenbloom 1987; Newell
1973a,b, 1990, 1992).

Architectural Components

During computer simulations with EPIC, its perceptual processors receive
information from simulated sensors that transduce stimuli presented through
input devices (e.g., display screens and headphones) in a virtual task envi-
ronment. After specified parametric delays, symbolic stimulus codes are sent
by the perceptual processors to the declarative working memory of EPIC's
cognitive processor. The cognitive processor maintains the contents of
working memory, executes procedures for performing various tasks, and
instructs the motor processors by sending them symbolic response codes
about what actions to take. The motor processors prepare and produce
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Figure 2.1  Diagram of the executive-process interactive control (EPIC) information-processing
architecture,

movements by simulated effectors that operate output devices (e.g. key-
boards, joysticks, and microphones) in the virtual task environment.
Together, EPIC and its task environment provide a basis for modeling
multiple-task performance in a variety of contexts. The components of the
architecture are tailored to be generally applicable and consistent with avail-
able empirical data about the nature of the human information-processing
system (e.g., Atkinson et al. 1988; Boff, Kaufman, and Thomas 1986; Meyer
and Kornblum 1993; Woodworth and Schlosberg 1954). Using the architec-
ture and computational models based on it, a theorist can watch a simulated
performer do single or multiple perceptual-motor and cognitive tasks, just as 4
an experimenter observes the performance of a real person.”

Perceptual processors In EPIC, the visual, auditory, and tactile sensory
modalities each have their own perceptual processor. The inputs to the per-
ceptual processors are stimuli transduced by simulated eyes, ears, and haptic
receptors. For example, EPIC’s eyes have retinas with foveal, parafoveal, and
peripheral regions, so the quality of the inputs to the visual perceptual pro-
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cessor depends on the retinal locations of stimuli. The perceptual processors
produce symbolic codes for stimulus features such as the locations, shapes,
sizes, colors, and identities of visual objects, which are kept in “object files”
(cf. Treisman 1988). Stimulus detection and identification times are parame-
ters for our computer simulations (cf. Woodworth and Schlosberg 1954).
Their contributions are modulated by the fact that EPIC's perceptual pro-
cessors function asynchronously and simultaneously with the cognitive pro-
cessor, whose operations depend on the contents of working memory.

Working memory EPIC's working memory has various subdivisions for
storing symbolic information (Kieras et al. forthcoming). Some subdivisions
of working memory contain visual, auditory, and tactile perceptual stimulus
codes (cf. Baddeley 1986), which may decay over time unless EPIC’s cogni-
tive processor refreshes them. Other subdivisions of working memory con-
tain response codes, efference copies of movements, and control codes for
the goals, procedural steps, and status of current tasks, which contribute to
operations by the cognitive processor.

Cognitive processor EPIC's cognitive processor is programmed with
production rules, each of which states that if its specified conditions are true,
then its specified actions should be executed. For a rule’s conditions to be
true, they must match items currently in working memory. When such
matches occur, the rule’s actions update the contents of working memory
and send instructions to EPIC’s motor processors. In this way, production
rules can be used to perform various perceptual-motor and cognitive tasks.

For example, during a primary auditory-manual choice-reaction task, the
following rule might be used by EPIC's cognitive processor to instruct the
manual motor processor that it should prepare and produce a keypress with
the left index finger in response to an 800 Hz tone:

IF
((GOAL DO TASK 1)
(STRATEGY TASK 1 IS IMMEDIATE)
(AUDITORY TONE 800 ON)
(STEP DO CHECK FOR TONE 800))
THEN
( (SEND-TO-MOTOR (MANUAL PERFORM LEFT INDEX))
(ADD (TASK 1 RESPONSE UNDERWAY))
(ADD (STEP WAIT FOR TASK 1 RESPONSE COMPLETION))
(DEL (STEP DO CHECK FOR TONE 800)) '
(DEL (AUDITORY TONE 800 ON))).

The actions of this rule, which not only instructs the manual motor
processor but also adds and deletes items in working memory, would be
executed whenever working memory contains all of the items in the rule’s
conditions. For each current task that EPIC is supposed to perform, there
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would be a set of such rules in procedural memory. Also, complementing
these task rule sets, procedural memory may contain sets of executive-process
rules that help manage the contents of working memory and that coordinate
multiple-task performance with respect to prevailing task priorities.13

Theoretical RTs for multiple-task performance stem from additional prop-
erties of EPIC's cognitive processor. During performance simulations, task
and executive production rules are applied by the production-rule interpreter
of the cognitive processor, which is based on a parsimonious production
system (PPS; Covrigaru and Kieras 1987). Under PPS, the production-rule
interpreter operates through a series of processing cycles, whose individual
durations vary stochastically around a mean value that typically equals 50
msec.14 At the start of each cycle, the conditions of all rules currently in
procedural memory are tested against the present contents of working mem-
ory. At the end of each cycle, for every rule whose conditions completely
match the contents of working memory, all of the rule’s actions are executed.
Given the complexity of representative multiple-task performance, several
successive processing cycles may be required to complete each of two or
more concurrent tasks, yielding EPIC's theoretical RTs.

At present, however, we assume that there is no limit on how many pro-
duction rules can have their conditions tested and actions executed during a
processing cycle. EPIC’s cognitive-processor cycle durations have the same
distribution regardless of how many production rules are involved. In this
respect, our system architecture therefore differs radically from some past
theoretical frameworks; it does not have an inherent structural cognitive
response-selection bottleneck or limited reservoir of divisible processing
capacity (cf. Kahneman 1973; Moray 1967; Pashler 1984, 1994a; Welford
1959, 1967). On the contrary, with appropriate sets of executive and task
production rules, EPIC’s cognitive processor may select responses and do
other operations simultaneously for concurrent tasks, avoiding between-task
interference at this “central” level.

A metatheoretical rationale for such assumptions appears in Meyer and
Kieras (1997a). Our reasons conform to the principles of parsimony and
neurophysiological plausibility espoused by other proponents of unification
in human-performance theory (e.g., Allport 1987; Neumann 1987; Newell
1990, 1992). Some empirical support for the present assumptions about the
capacity of EPIC's cognitive processor is provided by studies of multiple-
task performance in which virtually perfect time-sharing between two tasks
had occurred (e.g., Allport et al. 1972; Greenwald and Shulman 1973; Hirst"
et al. 1980; Koch 1993, 1994; Schumacher et al. 1997; Shaffer 1975; Wickens
1984).

Motor processors Nevertheless, at a “peripheral” level, EPIC’s motor
processors do act like bottlenecks similar to ones proposed by some other
theorists (e.g., Kantowitz 1974; Keele 1973; Keele and Neill 1978; Reynolds
1964). In our architecture, the ocular, manual, and vocal response modalities
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each have their own motor processor. Typically, the inputs to the motor
processors are symbolic codes for responses that have been selected by the
cognitive processor with its production rules.’® The outputs by the motor
processors are movements of simulated eyes, hands, and mouth, which inter-
act with the virtual task environment. For example, the manual motor pro-
cessor can produce various styles of hand movement such as pointing,
keypressing, typing, and joystick plying. The ocular motor processor can
produce eye movements through either voluntary cognitive control or re-
flexive perceptual control (cf. Fischer and Ramsberger 1984; Rafal, Henik,
and Smith 1991; Reuter-Lorenz, Hughes, and Fendrich 1991). Although the
ocular, manual, and vocal motor processors may all operate at the same time,
each of them individually is a single-channel mechanism that limits the over-
all rate of overt movements.

To be precise, we assume that after receiving the symbolic code for a
selected response, a motor processor converts it to elementary movement
features that the response should have overtly. For example, a keypress by
the manual motor processor might have features that specify the movement
style, hand, and finger to be used (e.g., PRESS, LEFT, INDEX). Consistent
with some empirical results (e.g., Abrams and Jonides 1988; Meyer and
Gordon 1985; Rosenbaum 1980; Yaniv et al. 1990), the movement features
for an overt response are prepared serially, with each feature-preparation
step consuming on the order of 50 msec. After all of the movement features
for a response have been prepared, the response is produced overtly through
a final initiation step that likewise takes on the order of 50 msec. Thus, while
symbolic response codes for concurrent tasks may be selected in parallel by
EPIC’s cognitive processor, the production of distinct overt responses by the
same motor processor would have to be temporally staggered, causing po-
tential between-task or “structural” interference (cf. Kahneman 1973).

An especially important case of such interference involves concurrent
tasks that each require manual responses. EPIC has only one motor processor
devoted to preparing and initiating movements by the two (i.e., right and
left) hands. For multiple manual tasks, substantial between-task interference
is therefore possible at the peripheral motor level even when the two tasks
utilize different hands and different sensory modalities. Effective coping with
such interference requires judicious supervisory control. That this control is
needed under these circumstances has been demonstrated amply by past
studies of manual movement production in multiple-task performance (e.g.,
Ivry et al. 1994, forthcoming; McLeod 1977).

Contributions by Attention and Performance symposia From the pre-
viously cited studies that helped stimulate the development of EPIC, it now
should be clear that past Attention and Performance symposia have made
major contributions to our thinking. Literally dozens of these studies have
been published as part of this series, and many of them have entailed reports
of informative RT data. Their prevalence in the present chapter provides

Précis to a Unified Theory




36

substantial inspiration for our first two methodological lessons (see table
2.1): “Now is the hour” and “Reaction time is of the essence.”

Formulation of EPIC Computational Models

We formulate explicit EPIC computational models of multiple-task perfor-
mance in terms of complementary production-rule sets, which specify the
operations of EPIC’s cognitive processor. First, for each task at hand, a dis-
tinct set of production rules that perform the task with the architecture’s
various components must be written. The task production rules translate
internal stimulus codes to internal response codes and keep other records
associated with the individual tasks. Second, a set of production rules for a
supervisory executive process must be written. The executive production
rules adaptively coordinate progress on the individual tasks so that instruc-
tions about task priorities are obeyed and the tasks do not disrupt each
other at peripheral perceptual-motor levels. Such coordination is achieved by
monitoring the contents of working memory and inserting or deleting task
goals together with other control items at appropriate moments along the
way. For example, the following executive production rule might be applied
to start processing for primary and secondary choice-reaction tasks of a PRP
procedure while ensuring that primary-task responses have higher priority
than secondary-task responses:

IF
((GOAL DO DUAL CHOICE RT TASKS)
(STRATEGY AUDITORY-MANUAL TASK 1)
(STRATEGY VISUAL-MANUAL TASK 2)
(VISUAL CENTER EVENT DETECTED ON)
(NOT (TRIAL UNDERWAY)))
THEN
( (SEND-TO-MOTOR MANUAL RESET)
(ADD (TRIAL UNDERWAY))
(ADD (GOAL DO TASK 1))
(ADD (GOAL DO TASK 2))
(ADD (STRATEGY TASK 2 MODE IS DEFERRED))
(ADD (STRATEGY UNLOCK ON MOTOR-SIGNAL MANUAL
STARTED LEFT))
(DEL (VISUAL CENTER EVENT DETECTED ON))
(ADD (STEP MOVE EYES TO RIGHT)) |
(ADD (STEP WAIT-FOR TASK 1 DONE))).

The executive production rules for scheduling and coordinating tasks may
change, depending on the particular task combinations, priorities, and sub-
jective strategies involved. Our EPIC computational models of multiple-task
performance therefore extend previous proposals by theorists who have
emphasized the importance of supervisory control in cognition and action
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(e.g. Baddeley 1986; Duncan 1986; Logan 1985; Neisser 1967; Norman and
Shallice 1986; Shallice 1972).

Assessment of EPIC Computational Models

We assess our EPIC computational models by simulating multiple-task
performance under test conditions that mimic those in which empirical
data from human participants are collected. During these assessments, an
environment-simulation program and human-simulation program are exe-
cuted conjointly on a computer workstation. The environment-simulation
program provides a sequence of stimulus inputs to the human-simulation
program and receives a sequence of response outputs from it, just as an ex-
perimenter would test a human participant by presenting real stimuli and
observing his or her overt behavior. The human-simulation program consists
of the EPIC architecture and production-rule sets in EPIC's cognitive
processor, which transform stimulus inputs to response outputs through
systematic operations like those outlined before (figure 2.1). Both the
environment-simulation program and EPIC’s software modules are written in
LISP. The sets of executive and task production rules used for the human-
simulation program conform to the syntax of the PPS production-rule inter-
preter (Covrigaru and Kieras 1987). Also, as detailed elsewhere (Meyer
and Kieras 1997a,b), execution of the simulation programs entails setting the
numerical values of parameters in the task environment and EPIC architecture.

After each simulation run, EPIC’s outputs may be compared with observed
results from human participants. Insofar as the simulated data match empiri-
cal data, this would suggest that our models should be taken as potentially
veridical descriptions of how human multiple-task performance is achieved.
We have found that for at least some models, good fits between simulated
and empirical data (e.g., RTs and error rates) may be obtained with relatively
few “free” parameters.

Overview of Applications

The subsequent sections of this chapter describe three representative task
domains for which we have formulated and applied some EPIC computa-
tional models of multiple-task performance: (1) the PRP procedure, a basic
laboratory paradigm that embodies some fundamental aspects of multiple-
task performance also found under real-world circumstances; (2) human-
computer interaction in a practical context, the servicing of requests by
customers to telephone operators for the initiation of collect phone calls; and
(3) concurrent visual-manual tracking and tactical decision making in military
aircraft operation, another practical context. From focusing on these diverse
task domains and our models for them, the potential value of unification in
human-performance theory may become clearer, and more lessons relevant
to the search for a unified theory of cognition and action may emerge.
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2.4 APPLICATION TO THE PSYCHOLOGICAL REFRACTORY-
PERIOD PROCEDURE

The PRP procedure is a popular laboratory paradigm for studying human
multiple-task performance (Bertelson 1966; Kantowitz 1974; Meyer and
Kieras 1997a,b; Pashler 1994a; Smith 1967). Many chapters in Attention and
Performance volumes have been based on it (see, for example, Kornblum
1973; Koster 1969; Meyer and Kornblum 1993; Sanders 1967, 1970). Such
popularity stems from the procedure’s simplicity, fecundity, and similarity to
important real-world situations in which people must perform perceptual-
motor and cognitive tasks concurrently. It is therefore fitting that we have
formulated our initial EPIC computational models to explain and predict rep-
resentative PRP data (Meyer and Kieras 1992, 1994, 1996, 1997ab; Meyer
et al. 1995). Any bona fide UTC should take these data seriously, and as we
show later, doing so sets the stage for analyses of multiple-task performance
in more complex practical contexts.

Methodology

In a representative experiment with the PRP procedure, there is a series of
discrete trials during which two distinct tasks must be performed more or
less concurrently. On each trial, a warning signal is followed by a stimulus
(e.g., visual letter or auditory tone) for the first task. Given the task 1 stimu-
lus, a participant must make a fast and accurate task 1 response (e.g., press a
finger-key or say a word). Soon after the task 1 stimulus, another stimulus is
presented for the second task. The perceptual modality and semantic cate-
gory of the task 2 stimulus may differ from those of the task 1 stimulus. The
time between the two stimuli is the stimulus-onset asynchrony (SOA), which
typically ranges between 0 and 1 sec. Given the task 2 stimulus, the partici-
pant must make a fast and accurate task 2 response. The effector for the task
2 response may differ from that for the task 1 response. In most cases,
instructions for the PRP procedure require that task 1 has higher priority
than task 2; they may also urge participants to make the task 1 response first
(see note 11).

The experimenter analyzes the RTs for tasks 1 and 2 to assess how much
the two tasks interfere with each other. Specifically, mean RTs for task 2 may
be plotted versus the SOA, forming PRP curves, which ordinarily decline as

the SOA increases. Depending on various methodological details, this SOA

effect—also called the “PRP effect”—can combine either additively or inter-
actively with the effects of other factors (e.g., stimulus discriminability,
response-selection difficulty, and movement complexity). Models of multiple-
task performance should account for the absolute magnitudes of the RTs and
the observed patterns of factor effects on them.
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Lessons from the PRP Procedure

Several methodological and substantive lessons (see tables 2.1 and 2.2) may
be learned from the PRP procedure and our efforts to formulate EPIC com-
putational models for performance under it.

Methodological lesson 4: “Our cup runneth over” The literature of
experimental psychology contains many alternative patterns of PRP curves,
manifesting various additivities and interactions among the effects of SOA
and other factors on mean RTs for task 2. Even when we confine our atten-
tion to factors that presumably affect just one particular processing stage
(e.g.. response selection) for the secondary task, considerable diversity
appears in the PRP-curve patterns obtained through manipulating those
factors. Metaphorically, our cup runneth over. The PRP procedure provides
a copious fermentation of data to be explained quantitatively and modeled
computationally.

Substantive lesson 1: “Response selection is not like pouring bottled
wine” Because of the apparent diversity in PRP-curve patterns, a crucial
substantive lesson has emerged as well. Results from our computational
modeling suggest that after only moderate practice, people do not select
responses to stimuli through an immutable structural bottleneck that only can
deal with one task at a time. Response selection is not like pouring bottled
wine. On the contrary, responses to two or more stimuli apparently can be
and are sometimes selected concurrently, thereby enabling substantial tem-
poral overlap between streams of processing for different tasks. Although in
accord with our initial assumptions about EPIC's cognitive processor, such
overlap patently contradicts some past hypotheses about how multiple-task
performance takes place under the PRP procedure. This contradiction has
taught us a fifth methodological lesson, which concerns the attitude one
should adopt when pursuing theoretical unification.

Methodological lesson 5: “Expect the unexpected” Unexpected con-
ceptual twists and turns are to be expected along the way. For example,
before our journey with EPIC began, the best-known explanation of the PRP
effect on secondary-task RTs was the response-selection bottleneck (RSB)
hypothesis (Welford 1959, 1967; McCann and Johnston 1992; Pashler 1984,
1990, 1993, 1994a; Pashler and Johnston 1989). Past theorists have argued
for it based on quasi-additive effects of SOA and task 2 response-selection
factors in some PRP experiments. However, EPIC computational models of
people’s performance under this procedure raise grave doubts about these
arguments. Such abrupt changes in theoretical direction are likely to happen
repeatedly down the road, because a major benefit of seeking UTCs is the
discovery of new and uncharted but promising conceptual territory.
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Methodological lesson 6: “Be careful what you ask for; you might
actually get it” Also relevant here is a sixth methodological lesson that
pertains directly to why past theorists have been misled in their advocacy of
the traditional RSB hypothesis. As mentioned before, the instructions to par-
ticipants under the PRP procedure request that responses for task 1 have
higher priority and earlier onsets than responses for task 2. This request
explicitly constrains participants to use some bottleneck mechanism that
restricts the “flow” of information processing for task 2, so that responses for
task 2 do not occur before those for task 1 at short SOAs. For example, in an
EPIC computational model, precluding out-of-order task 2 responses requires
imposing temporary strategic software bottlenecks through executive con-
trol. Theorists who advocate the traditional RSB hypothesis may have been
misled because experimenters who adopted the PRP procedure actually got
the kind of performance that participants were asked to produce. Consistent
with methodological lesson 6, care therefore must be taken to accommodate
the role of task instructions in modeling multiple-task performance (cf. Newell
1973a, 1990).

An Instructive PRP Study

We first learned these lessons through formufating EPIC compufational

‘models to account for results from an instructive PRP study by Hawkins,

Rodriguez, and Reicher (1979).

Procedure In this study, there were four different primary tasks, which
involved either auditory stimuli (tones) or visual stimuli (printed letters) and
either manual responses (keypresses by left-hand fingers) or vocal responses
(spoken words). Participants performed each primary task together with one
or the other of two different secondary tasks, which involved either two or
eight visual stimuli (digits) and two manual responses (keypresses by right-
hand fingers). For each combination of tasks 1 and 2, the SOAs ranged from
0 to 1,200 msec. These manipulations let participants’ RTs for the two tasks
be measured jointly as a function of the SOA, task 1 perceptual modality,
task 1 motor modality, and task 2 response-selection difficulty (Sanders 1980;
Sternberg 1969).16 Thus, this study provides a large set of data with which
to test alternative models of basic human multiple-task performance, thereby
exemplifying the riches mentioned before in methodological lesson 4.

Results Figure 2.2 shows empirical mean RTs for tasks 1 and 2 reported
by Hawkins, Rodriguez, and Reicher (1979). Several salient aspects of these
data should be noticed.

First, consider the empirical mean RTs for task 1 (large unfilled symbols on
solid curves). Primary-task responses took longer when the task 1 stimuli
were auditory rather than visual (figures 2.2A and 2.2C vs. figures 2.2B and
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Figure 2.2 Results based on the PRP procedure in Hawkins, Rodriguez, and Reicher (1979).
Large symbols on solid curves represent empirical mean RTs; small symbols on dashed curves
represent simulated mean RTs produced by the strategic response-deferment (SRD) model. Filled
circles and triangles represent mean RTs for task 2 when response selection in task 2 was, respec-
tively, easy and hard: unfilled circles and triangles represent corresponding mean RTs for task 1.
A. Simulated versus empirical mean RTs for a combination of auditory-vocal task 1 and visual-
manual task 2. B. Simulated versus empirical mean RTs for a combination of visual-vocal task 1
and visual-manual task 2. C. Simulated versus empirical mean RTs for a combination of auditory-
manual task 1 and visual-manual task 2. D. Simulated versus empirical mean RTs for a combina-
tion of visual-manual task 1 and visual-manual task 2.
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2.2D) and when the task 1 responses were vocal rather than manual (figures
2.2A and 2.2B vs. figures 2.2C and 2.2D). These effects of the task 1 stimulus
and response modalities were essentially additive. This suggests that stimu-
lus encoding and movement production for task 1 occurred during tempo-
rally separate stages of processing (Sternberg 1969). Furthermore, regardless
of the task 1 stimulus and response modalities, neither the SOA nor the dif-
ficulty of response selection in task 2 affected the mean RTs for task 1 very
much. This suggests that consistent with typical instructions in the PRP pro-
cedure, participants almost invariably gave task 1 priority over task 2.

Next, let us consider the empirical mean RTs for task 2 (large filled sym-
bols on solid curves). Regardless of which task 1 was involved, the difficulty
of task 2 affected mean RTs for task 2 directly (figures 2.2A through 2.2D),
as we would expect if task 2 response selection took longer when task 2
involved more S-R pairs. Also, regardless of which task 1 was involved, the
SOA affected mean RTs for task 2 inversely. Presumably this happened be-
cause after the shorter SOAs, some stage of processing in task 2 had to be
postponed temporarily until processing for task 1 progressed enough that
task 2 responses would seldom, if ever, precede task 1 responses.

However, the relationship between the effects of SOA and task 2 difficulty
on the mean RTs for task 2 differed as a function of which task 1 was
involved. For example, when a visual-manual task 1 was involved (figure
2.2D), mean RTs for task 2 were affected almost additively by the SOA and
response-selection difficulty in task 2. Such additivity also tended to occur
when a visual-vocal task 1 was involved (figure 2.2B). Given locus-of-slack
logic (McCann and Johnston 1992; Meyer and Kieras 1997a,b; Pashler 1984),
these additivities would be consistent with the traditional RSB hypothesis.
Nevertheless, when either an auditory-vocal or auditory-manual task 1 was
involved, substantial interactions occurred between the effects of SOA and
task 2 response-selection difficulty on mean RTs for task 2 (figures 2.2A and
2.2C); the difficulty effects were considerably less at shorter SOAs than at
longer SOAs, yielding marked underadditive interactions. By locus-of-slack
logic, such underadditivity is inconsistent with the RSB hypothesis (Karlin
and Kestenbaum 1968; Keele 1973; Meyer and Kieras 1997a,b; Schumacher
et al. forthcoming; Schvaneveldt 1969). On the contrary, it appears here that
response-selection processes for tasks 1 and 2 took place concurrently after
shorter SOAs. '

Such heterogeneous patterns of additivity and interaction involving
manipulations of SOA and other factors (e.g., S-R compatibility) that influ-
ence response-selection difficulty for task 2 also have been reported else-
where (e.g., Schumacher et al. 1996, forthcoming). Frequent, but not universal,
temporal overlap of the response-selection processes for tasks 1 and 2 there-
fore may occur under the PRP procedure. Of course, this is what led us to
substantive lesson 1, methodogical lesson 5, and methodogical lesson 6 at
the start of the present section.
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Theoretical implications Given these lessons and the discoveries on
which they rest, the traditional RSB hypothesis must be abandoned. Instead,
a new and more apt account of multiple-task performance that takes what we
have learned to heart is needed for the PRP procedure. The next subsection
outlines what this new account entails, ) ,

Adaptive Executive-Control Models

To account quantitatively for human performance under the PRP procedure,
we have formulated a class of adaptive executive-control (AEC) models
based on the EPIC architecture (Meyer and Kieras 1996, 1997a,b; Meyer et
al. 1995). Our AEC models incorporate executive processes that flexibly
control the extent to which secondary-task processes may overlap tempo-
rally with primary-task processes. Figure 2.3 outlines how such control is
achieved.

According to this view, performance of each task progresses through a se-
quence of stages, including stimulus identification, response selection, and
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Figure 2.3 Adaptive executive-control (AEC) models of multiple-task performance for the
PRP procedure. Diagonal lines with arrows that extend rightward from executive processes to
secondary-task processes indicate alternative lockout points for task 2 (right-side ovals). Diagonal
lines with arrows that extend leftward from executive processes to primary-task processes indi-
cate alternative unlocking events for task 1 (left-side ovals).
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movement production, consistent with discrete stage models (Sternberg
1969; Sanders 1980). An executive process coordinates progress on the pri-
mary and secondary tasks by optionally postponing one or more stages of
processing for task 2 until task 1 has finished. The supervisory functions of
the executive process include (a) enabling the primary-task and secondary-
task processes to begin at the start of each trial: (b) specifying a temporary
task 2 lockout point; (c) specifying a temporary task 1 unlocking event; (d)
waiting for the task 1 unlocking event to occur; and (e) unlocking task 2
processes so that their responses may be completed. Together, these func-
tions ensure that instructions associated with the PRP procedure are satisfied
(ie., task 1 responses receive higher priority and occur before task 2
responses) even though there is enough cognitive processing capacity to
perform the two tasks concurrently with little or no interference between
tasks. Through the particular combination of task 2 lockout point and task 1
unlocking event that it uses, the executive process can adjust exactly how
much priority is given task 1 over task 2.

Lockout points for task 2 By definition, the lockout point for task 2 is a
point during the course of task 2 such that when it has been reached, further
processing for task 2 stops temporarily until task 1 enters a “done” state.
Under our AEC models, there are at least three alternative lockout points for
task 2 (figure 2.3, right-side ovals), located before the onsets of, respectively,
stimulus identification, response selection, and movement production for
task 2. Depending on whether the executive process uses a premovement,
preselection, or preidentification lockout point, the processes for task 2
would overlap more or less with those processes for task 1 after short SOAs.

Unlocking events for task 1 The amount of temporal overlap between
processes for task 1 and those for task 2 also depends on which unlocking
event is used for task 1. By definition, this is an event during the course of
task 1 such that when it occurs, task 1 is deemed to be “done,” and the exec-
utive process permits processing for task 2 to progress beyond the lockout
point for task 2. Under our AEC models, there are several alternative
unlocking events for task 1 (figure 2.3, left-side ovals); task 1 may be deemed
“done” immediately after either its stimulus identification, response selection,
or movement production stage finishes. Depending on whether the execu-
tive process uses a postidentification, postselection, or postmovement un- 1
locking event, the processes for task 2 would overlap more or less with '
those for task 1 after short SOAs.

Particular cases Overall, the class of AEC models includes many particu-
lar cases. For each possible combination of lockout point for task 2 and |
unlocking event for task 1, there is a specific set of executive production
rules that can implement this combination, achieving a certain preferred
amount of temporal overlap between the two tasks. Which executive rule set
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is used under what circumstances varies with task instructions, strategic
goals, perceptual-motor requirements, prior practice, cognitive style, and
personal preference. ,

From this perspective, the choices of a lockout point and unlocking event
are analogous to the choice of a decision criterion (beta) in signal-detection
theory (Tanner and Swets 1954), which may vary with the relative payoffs
and costs assigned to one type of response outcome versus another. For ex-
ample, some models within the AEC class mimic a response-selection bottle-
neck by using a preselection lockout point for task 2 and a postselection
unlocking event for task 1. Such “cautious” task scheduling could be pre-
ferred when prevailing circumstances strongly encourage that task 1
responses always precede task 2 responses. Other models within the AEC
class mimic a movement-production bottleneck by using a postselection/pre-
production lockout point for task 2 and a post—production unlocking event
for task 1 (cf. De Jong 1993; Keele 1973). Such “daring” task scheduling
could be preferred instead when circumstances strongly encourage that task

2 responses be produced almost as quickly as task I responses at short
SOA:s.

Strategic Response-Deferment Model

Among models in the AEC class, one with which we have worked exten-
sively is the strategic response-deferment (SRD) model. This model is inter-
esting and apt because as each trial evolves during the PRP procedure, its
executive process first uses a post—response-selection lockout point for task
2 but later briefly imposes a pre-response-selection lockout point, depend-
ing on how far the processes for task 2 have progressed when the pre-
specified unlocking event for task 1 occurs. Given such adaptive executive
control, mean RTs for task 2 produced by the SRD model closely match
various patterns of empirical PRP curves from previous experiments with the
PRP procedure. These patterns and the model’s goodness of fit take into ac-
count not only the effects of SOA but also effects caused by manipulations
in the relative difficulties of the primary and secondary tasks (Meyer and
Kieras 1997a,b; Meyer et al. 1995).

Details of executive process Figure 2.4 outlines the executive process of
the SRD model in more detail. At the start of each trial during the PRP pro-

cedure, the executive process puts task 1 in an immediate response-transmission

mode and task 2 in a deferred response-transmission mode. While task 2 is in de-
ferred mode, the symbolic identities of its responses may be selected and
sent to declarative working memory, but overt response movements for task
2 are not produced by EPIC’s motor processors. This constraint is imposed
by adding a special control note to working memory, which specifies a post-
selection/preproduction lockout point for task 2. Putting task 1 in immediate
mode lets its responses be selected and sent to their motor processor as
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Figure 2.4 Steps taken by the executive process of the SRD model to unlock processes in task
2 for the PRP procedure after task 1 has been declared “done.” Breaks in the vertical time lines
shown by diagonal hash marks represent variable time intervals whose durations depend on the
SOA and temporal properties of prior processes.

quickly as possible for movement production. This freedom is enabled by
adding another control note to working memory. When the task 1 unlocking
event later occurs (e.g., the overt response movement for task 1 is initiated),
the executive process temporarily suspends task 2 and shifts it to immediate
mode, after which task 2 is resumed. Following this transition, the identities
of previously selected responses for task 2 may be transferred from working
memory to their motor processor for movement production. If response se-
lection has not yet finished for task 2 before it is shifted to immediate mode,
then subsequently the production rules for task 2 will both select and send
the identities of its responses directly to their motor processor.!?
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Alternative paths of information processing and reaction time equa-
tions for task 2 Because of how its executive process works, five alterna-
tive paths of information processing (different sequences of operations) may
lead from stimuli to response movements for task 2 in the SRD model
(Meyer and Kieras1997a, figures 10-through 13). Which path is taken during
a particular trial of the PRP procedure depends on the SOA and the relative
difficulty of task 1 versus task 2. Associated with each path is a distinct
equation that defines the RTs for task 2 in terms of the model’s parameters
and the SOA (Meyer and Kieras 1997a, table 3). Under some experimental
conditions, all five paths and equations contribute to the RTs for task 2 over
the interval of positive SOAs. Under other experimental conditions, the RTs
for task 2 stem from only a subset of these paths and equations. Conse-
quently, the SRD model implies that the SOA and other factors (e.g.,
response-selection difficulty for task 2) can affect mean RTs for task 2 either
additively or interactively, depending on prevailing experimental conditions
(Meyer and Kieras 1997a, figure 15).

Account of mean reaction times in Hawkins et al. Given its theoretical
implications, we have applied the SRD model successfully in accounting for
the mean RT data of Hawkins, Rodriguez, and Reicher 1979. A summary of
the obtained account appears in figure 2.2, which shows simulated mean RTs
from the SRD model versus empirical mean RTs as a function of SOA for
various combinations of primary and secondary tasks. With respect to both
tasks 1 and 2, the simulated RTs fit the empirical RTs fairly well regardless of
which perceptual and motor modalities were involved during task 1. For task
2, the simulated RTs accurately approximate the interactive and additive
effects of SOA and response-selection difficulty on the empirical RTs. The
SRD model required relatively few context-dependent parameters to achieve
its goodness of fit; the number of parameter values used here was markedly
less than the number of reliable one-degree-of-freedom contrasts in the em-
pirical mean RT data. Similarly, the SRD model (Meyer and Kieras 1997a,b)
has provided accurate parsimonious quantitative accounts of mean RTs
from a variety of other studies with the PRP procedure (e.g., Karlin and
Kestenbaum 1968; McCann and Johnston 1992; Pashler 1990). This led us to
substantive lesson 1.

Further Lessons

Our SRD model and other related members of the AEC class have also taught
us other substantive and methodological lessons (see tables 2.1 and 2.2).

Substantive lesson 2: “It's difficult to leap before you look” A second
substantive lesson concerns the role of eye movements during concurrent
choice-reaction tasks. As figure 2.2 indicates, large underadditive interactions
between the effects of SOA and response-selection difficulty on mean RTs
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for task 2, which manifest temporal overlap between concurrent response-
selection processes, occurred in Hawkins, Rodriguez, and Reicher 1979 when
task 1 involved auditory stimuli and task 2 involved visual stimuli. However,
when both tasks involved visual stimuli, these SOA and difficulty effects were
approximately additive, suggesting that the selection of responses for task 2
usually took place after the selection of responses for task 1 had finished.
Why and how did this happen? Intervening eye movements provide the an-
swer.

When both tasks in Hawkins, Rodriguez, and Reicher 1979 involved
visual stimuli, a large (>5 degrees) visual angle separated them. Thus, on
each trial there, participants first had to look at the stimulus for task 1 and
later had to make a time-consuming saccadic eye movement to look at the
stimulus for task 2. This intervening saccade, which was not needed when
task 1 involved auditory stimuli, presumably prevented the response-
selection processes for tasks 1 and 2 from temporally overlapping. By when
the stimulus for task 2 had been identified and response selection for task 2
had begun after the saccade, response selection for task 1 already would
have finished even if the SOA was very short. The consequences of this
constraint are embodied in the SRD model's simulated RTs for task 2 under
these conditions (figures 2.2B and 2.2D). We therefore learn here that
although procedural cognitive processes may have the capacity to select
responses concurrently for multiple tasks, such capacity will not be apparent
if a peripheral perceptual-motor bottleneck (also referred to as “structural
interference”; Kahneman 1973) precludes its benefits.

Substantive lesson 2 is relevant to interpreting results not only from
Hawkins, Rodriguez, and Reicher 1979 but also from other studies as well.
For example, McCann and Johnston (1992, experiment 2) reported a study in
which the SOA and difficulty of response selection for task 2 affected the
mean RTs for task 2 almost additively. Again this additivity may have
stemmed from manditory eye movements intervening between the onsets of
stimuli for task 1 and task 2 (Meyer and Kieras 1997b). If so, then McCann
and Johnston's results would not support the traditional RSB hypothesis per
se; instead, a peripheral perceptual-motor bottleneck could account for them.
Given such considerations, viable UTCs must incorporate realistic treatments
of the contributions and constraints associated with eye movements during
human multiple-task performance.

Substantive lesson 3: “Variety is the spice of life” A third substantive
lesson from our work with the PRP procedure is that there are interesting
individual differences in how people coordinate multiple-task performance.
According to our AEC models (see figure 2.3), people may have two alter-
native types of strategy for scheduling performance of the primary and
secondary tasks in the PRP procedure (Meyer and Kieras 1996, 1997b). One
type of strategy is cautious. Cautious scheduling strategies use relatively early
(e.g., preselection) lockout points for task 2 and relatively late (e.g. post-
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production) unlocking events for task 1, as if there were a cognitive response-
selection bottleneck. This allows little temporal overlap between processes
for task 1 and those for task 2, increasing RTs for task 2 after short SOAs in
order to minimize the likelihood that overt responses for task 2 might pre-
cede those for task 1 and thereby violate the PRP procedure’s requirements.
By contrast, a second type of scheduling strategy is daring. Daring scheduling
strategies use relatively late (e.g., postselection) lockout points for task 2 and
relatively early (e.g., preproduction) unlocking events for task 1, consistent
with there being no response-selection bottleneck.’® This allows greater
temporal overlap between processes for task 1 and those for task 2, decreas-
ing RTs for task 2 at short SOAs but increasing the likelihood that overt
responses for task 2 might precede those for task 1 and violate the PRP pro-
cedure’s requirements. Which scheduling strategy is adopted under what cir-
cumstances presumably depends on factors such as the subjective difficulties
of tasks 1 and 2, people’s prior experience with multiple-task situations, and
their personal preferences for conservative or aggressive task performance.

Given these considerations, we predicted that under the PRP procedure,
some participants’ RT data would manifest cautious task scheduling and
others’ would manifest daring task scheduling. Indeed, this prediction has
been confirmed already in a study by Lauber et al. (1994, experiment 2; see
also Meyer et al. 1995). Their study replicated the one of Hawkins, Rodri-
guez, and Reicher (1979) with an auditory-manual task 1 and visual-manual
task 2, except that Lauber et al.'s task 1 was more challenging.® This change
encouraged more participants to use cautious rather than daring task
scheduling (Meyer and Kieras 1997b).2° As a result, diverse patterns of
PRP curves appeared in the participants’ RT data.

Figures 2.5A and 2.5B illustrate this diversity clearly. In figure 2.5A are
the PRP curves of a participant for whom the effect of response-selection dif-
ficulty on mean RTs for task 2 increased reliably as the SOA decreased. Here
the negative SOA-by-difficulty interaction suggests a cautious scheduling
strategy that used a hybrid combination of preselection and postselection
lockout points for task 2 (Meyer and Kieras 1997b). By contrast, figure 2.5B
shows the PRP curves of a different participant, for whom the effect of
response-selection difficulty on mean RTs for task 2 decreased reliably as the
SOA decreased. The latter positive SOA-by-difficulty interaction is exactly
opposite to the former one (cf. figure 2.5A), suggesting a daring scheduling
strategy that consistently used a postselection lockout point for task 2
(Meyer and Kieras 1997b). The difference between the task-scheduling strat-
egies of these two participants occurred even though their mean RTs for task
1 were similar.2! This outcome, consistent with substantive lesson 3, again
demonstrates how striving toward a complete veridical UTC can uncover
instructive new phenomena that otherwise might go unnoticed from the
perspective of older theoretical viewpoints such as the traditional RSB
hypothesis.22
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Figure 2.5 Results from using the PRP procedure in Lauber et al. 1994, experiment 2. A. Mean
RTs for task 2 as function of SOA and response-selection difficulty in task 2 for participant 1.
B. Mean RTs for task 2 as function of SOA and response-selection difficulty in task 2 for
participant 8.

Substantive lesson 4: “Wherever there’s a will, there are ways”
Related to the preceding analysis is a fourth substantive lesson; executive
cognitive processes and various strategies of task performance are every-
where. Apparently, they play crucial roles not only in complex cognitive
domains like memory (Reitman 1970) and problem solving (Newell and
Simon 1972) but also in seemingly simpler domains like selective attention
and elementary multiple-task performance (cf. Moray 1979). Of course, this
generality is not too surprising in light of some past precedents.

For example, consider sensory psychophysics (Green and Swets 1996;
Krantz 1969; Luce 1963; Tanner and Swets 1954). At first, the dominant
model in sensory psychophysics was high-threshold theory (HTT). Analo-
gous to the traditional perceptual and response-selection bottleneck hypoth-
eses (Broadbent 1958; Pashler 1994a; Welford 1959, 1967), HTT assumed
that human observers detect simple sensory stimuli (e.g., light flashes and
tone bursts) through a discrete all-or-none threshold mechanism, wherein the
subjective stimulus intensity must exceed some constant absolute level to be
detected. Because of this threshold’s putative rigidity, it provided little room
for observers’ decision criteria and judgment strategies. As a result, many
problematic psychophysical data went unexplained.

Ultimately, however, signal-detection theory (SDT) emerged on the scene,
reconciling phenomena that had previously bedeviled HTT. Unlike in HTT,
no discrete absolute high threshold is assumed in SDT. Instead, SDT charac-
terizes observers’ detection performance in terms of stochastic processes that
involve a continuum of sensory states and adjustable decision criteria. Accord-
ing to this characterization, observers set their decision criteria (beta values)
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strategically to achieve various preferred frequencies of “hits” for stimulus
signals and “correct rejections” for noise, depending on prevailing reward
schemes. These strategic adjustments account well for the forms of receiver
operating-characteristic (ROC) curves and the different points that observers
adopt on them. )

Similar to this account is our use of the SRD and other AEC models for
interpreting the forms of PRP curves (Meyer et al. 1995; Meyer and Kieras
1997b). In essence, the lockout points for task 2 and the unlocking events for
task 1 in the AEC models play much the same conceptual role that SDT's
decision criteria play. If the detection of simple sensory signals involves so-
phisticated supervisory executive processes, it is only natural that multiple-
task performance does too. The moral of our story is that a complete veridical
UTC must acknowledge such processes and provide a basis for computa-
tionally modeling the diverse performance strategies associated with them.

Methodological lesson 7: “Average at your own risk” That human
multiple-task performance is mediated by various task-scheduling strategies
has other methodological implications as well. Results from paradigms like
the PRP procedure should not be averaged across participants without first
checking for systematic individual differences among them. As mentioned
elsewhere (e.g., Estes 1956; Meyer et al. 1988; Siegler 1987), forgoing such
checks can lead to seriously erroneous conclusions.

For example, consider figure 2.6A. Here we have plotted RTs for task 2
obtained by averaging over a whole group of participants who were in the
same experiment from which figure 2.5 came. After such averaging, the
mean RT data for task 2 appear to form “parallel” (vertically equidistant)
PRP curves that embody nearly additive effects of SOA and response- |
selection difficulty. If only these averaged data had been considered, then
one might conclude that the participants all performed according to the tra-
ditional RSB hypothesis (cf. McCann and Johnston 1992; Pashler 1984,
1994a; Pashler and Johnston 1989). However, this conclusion would not be
correct with respect to the individual participants’ data patterns, as indicated
by figures 2.5A, 2.5B, and 2.6B.

In particular, figure 2.6B shows interactions between the effects of SOA
and response-selection difficulty on mean task 2 RTs for each individual par-
ticipant who contributed to figure 2.6A. Here the distribution of interactions
is rather diffuse; one participant had an approximately null interaction (ie.,
additive effects of SOA and task 2 difficulty), but three participants had
markedly negative interactions (e.g., see figure 2.6B, participant 1), and four
others had various magnitudes of positive interaction including some that
were quite large (e.g., see figure 2.6B, participant 8). This is not what
would happen if a traditional response-selection bottleneck mediated every
participant’s performance. To the contrary, some participants apparently
used task-scheduling strategies that were cautious (ie., lacked overlapping
response-selection processes), but others used strategies that were more
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Figure 2.6 Further results from using the PRP procedure in Lauber et al. 1994, experiment 2
(cf. figure 2.5). A Mean RTs for task 2 as function of SOA and response-selection difficulty in
task 2 obtained by averaging over a group of eight participants. B. Magnitudes of interaction
between the effects of SOA and response-selection difficulty on mean RTs in task 2 for the indi-
vidual participants who contributed to figure 2.6A. Dark vertical bars represent the participants’
observed interactions. Light vertical bars represent the distribution of predicted interactions that
should have occurred if all participants used the same cautious strategy of task scheduling and
the observed interactions differed only because of between-trial RT variance.

daring (i.e., had overlapping response-selection processes).* Averaging the
RT data for task 2 across these two subgroups of participants obscures the
crucial differences between them, creating the illusion that the traditional
RSB hypothesis has been supported. Consequently, one might wonder how
often such illusions have occurred on past occasions when experimenters
advocated the RSB hypothesis after finding seemingly additive SOA and
difficulty effects for task 2 in averaged group PRP curves.24

Substantive lesson 5: "You can teach young performers new tricks" De-
spite the preceding concerns, we have learned a fifth substantive lesson; under
at least some circumstances, most if not all participants in a group can be
trained to adopt the same daring scheduling strategy.25 This follows because
the lockout points for task 2 and the unlocking events for task I in our AEC
models (see figure 2.3) are presumably flexible and open to change through
appropriate practice or instructional manipulations. These models therefore
predict that even participants who initially prefer cautious scheduling strat-
egies when task 1 is difficult may come eventually to prefer daring task
scheduling.
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Figure 2.7 Results from using a standard PRP procedure in Lauber et al. 1994, experiment 3,
with a hard auditory-manual task 1 and easy or hard visual-manual task 2 after participants had
three days of initial variable-priority training. A. Mean RTs for task 2 as function of SOA and
response-selection difficulty in task 2 averaged over eight participants. B. Magnitudes of inter-
action between the effects of SOA and response-selection difficulty on mean RTs in task 2 for
individual participants. Dark vertical bars represent the participants’ observed interactions. Light
vertical bars represent the distribution of predicted interactions that should have occurred if all
participants used the same daring strategy of task scheduling and the observed interactions
differed only because of between-trial RT variance.

Such predictions are supported by more results from the study by Lauber
et al. (1994, experiment 3). Eight new participants were given an initial
three-day phase of variable-priority training, after which they were tested in
a one-day assessment phase with the standard PRP procedure. The training
phase followed Gopher's suggestions (1993) about how to enhance the effi-
ciency of dual-task performance. It required that concurrent auditory-manual
and visual-manual tasks be performed with equal priority and no constraints
on the serial order of stimuli and responses. The relative difficulties of the
auditory-manual and visual-manual tasks also varied orthogonally across trial
blocks. Because of instructions given before the training phase started, par-
ticipants were strongly encouraged to overlap their response-selection proc-
esses for the two tasks regardless of their difficulty. After the training phase
ended, participants entered the subsequent assessment phase, which involved
the same PRP procedure that had yielded the results shown in figure 2.6,
where a hard auditory-manual primary task was combined with easy or hard
visual-manual secondary tasks (Lauber et al. 1994, experiment 2).2¢

Some results from this assessment appear in figure 2.7A. Here, although
the same relatively hard task 1 is involved as before, the mean RTs for task 2
do not look like those previously obtained by Lauber et al. (1994, experi-
ment 2; cf. figure 2.6A). After variable-priority training, participants who
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transferred to the standard PRP procedure had average group PRP curves
that embodied a strong positive interaction between the effects of SOA and
response-selection difficulty in task 2.2 It therefore appears that these par-
ticipants often selected their responses for tasks 1 and 2 concurrently after
short SOAs, as would happen through a daring scheduling strategy of the
type assumed in the SRD model (see figure 2.4). Indeed, the present post-
training RT pattern looks much like what Hawkins, Rodriguez, and Reicher

'(1979) obtained previously with the standard PRP procedure when task 1

was easier (cf. figure 2.2C).

Moreover, it appears that after variable-priority training, most if not all
participants performed in about the same fashion. Figure 2.7B shows inter-
actions between the effects of SOA and response-selection difficulty on
mean task 2 RTs for each participant who received such training (Lauber et
al. 1994, experiment 3). These participants’ interactions, unlike previous ones
(cf. figure 2.6B), are uniformly positive. The distribution of observed inter-
actions in figure 2.7B is very similar to what should have occurred if every
participant used a daring scheduling strategy through which responses for
tasks 1 and 2 were selected concurrently. This outcome proves clearly that
people can be trained to perform concurrent tasks without an immutable
structural response-selection bottleneck.22 These findings reinforce those
obtained by Gopher (1993).

Substantive lesson 6: “Dual-task performers can share and share alike’
Our sixth substantive lesson follows from an even more extreme demon-
stration of the response-selection bottleneck’s ephemeral nature. As our
assumptions about the capacities of EPIC's cognitive processor predict, we
have found that through judicious instruction and training, people can per-
form two generic choice RT tasks with essentially no interference between
tasks (Schumacher et al. 1997). Such virtually perfect time-sharing occurs
when five prerequisite conditions prevail in combination: (1) participants are
encouraged to give the tasks equal priority; (2) participants are expected to
perform each task quickly; (3) there are no constraints on temporal relations
or serial order among responses; (4) different tasks use different perceptual
and motor processors; and (5) participants receive enough practice to com-
pile complete production-rule sets for performing each task. Results obtained
under these conditions confirm and extend previous claims about the exis-
tence of perfect time-sharing in multiple-task performance (e.g., Allport,
Antonis, and Reynolds 1972; Greenwald and Shulman 1973; Hirst et al.
1980; Koch 1993, 1994; Shaffer 1975; Wickens 1984).

Specifically, consider figure 2.8, which shows mean RTs from the fifth
session of an experiment that satisfied the aforementioned conditions ,
(Schumacher et al. 1997). In this experiment, there were an auditory-vocal
RT task and a visual-manual RT task.2® The experiment included three trial
types: (1) dual task; (2) heterogeneous single task; and (3) homogeneous single |
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Figure 2.8 Mean RTs from three trial types in an experiment that demonstrates virtually
perfect time-sharing under certain prerequisite conditions (Schumacher et al., 1997).

task. On dual-task trials, participants performed both tasks simultaneously, and
the stimuli for them had a zero SOA. On heterogeneous single-task trials, only
one stimulus (either auditory or visual) was presented, and only one task was
performed. However, the heterogeneous single-task and dual-task trials were
interleaved randomly within trial blocks, so before each of these trials, par-
ticipants were uncertain about which tasks would come next. In contrast, the
homogeneous single-task trials were arranged such that the same one task had to
be performed on each trial throughout a block. Some blocks of homogeneous
single-task trials involved the auditory-vocal task, while others involved the
visual-manual task. Although the various trial types differed substantially in
their nominal demands on participants’ information-processing resources, the
mean RTs and error rates that resulted from them were nearly equal (see
figure 2.8). Furthermore, the individual RTs for the auditory-vocal and
visual-manual tasks had values that were essentially independent of each
other within the dual-task trials, as perfect time-sharing would entail. This
outcome casts grave doubt on the traditional RSB hypothesis but strongly
affirms our theoretical claim that skilled performers can test the conditions
and execute the actions for two sets of task production rules concurrently.
The results in figure 2.8 also raise another intriguing question. Why have
past attempts of some other experimenters (e.g., Pashler 1994b; Ruthruff,
Pashler, and Klassen 1995) who tried to “uncork” the putative response-
selection bottleneck been unsuccessful? Perhaps the answer is that their
experiments did not satisfy one or more of the prerequisite conditions for
perfect time-sharing. This seems likely because Pashler’s experiment (1994b)
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required participants to perform two manual tasks concurrently, and Ruth-
ruff, Pashler, and Klaasen's experiment (1995) required participants to produce
their vocal and manual responses in grouped fashion, which imposed strong
constraints on the temporal relations among responses. Thus we would ex-
pect that these experiments might produce seductively misleading evidence
of central response-selection or peripheral perceptual-motor bottlenecks. The
repeated fulfillment of such expectations reinforces our prior methodological
lesson 6: “Be careful what you ask for; you might actually get it.”30

Methodological lesson 8: “Seek and you shall find; knock and it shall
be opened unto you” Equally relevant at this juncture is an eighth meth-
odological lesson; along the path to a complete veridical UTC, interesting
new predictions may be derived theoretically and confirmed empirically. For
example, our discoveries of systematic individual differences in dual-task
performance under the PRP procedure (substantive lesson 3), beneficial
effects of training on participants’ task-scheduling strategies (substantive
lesson 5), and virtually perfect time-sharing (substantive lesson 6) all were
stimulated by predictions based on the present AEC models and their EPIC
architecture. One might therefore be optimistic that further steps toward
theoretical unification will yield more successful predictions. Indeed, such
optimism is justified by results from subsequent applications of EPIC
to modeling multiple-task performance in other domains beyond the PRP
procedure.

2.5 APPLICATION TO HUMAN-COMPUTER INTERACTION

Beyond the PRP procedure, one practical domain to which we have applied
the EPIC architecture for modeling multiple-task performance is human-
computer interaction (Kieras and Meyer forthcoming; Kieras, Wood, and
Meyer 1995, 1997). Financial support of this application has come from
NYNEX, a regional telephone company in the northeastern United States;
our research on HCI concerns performance by telephone operators who pro-
vide on-line service to customers making phone calls.

EPIC computational models are especially relevant in this regard. The
operators’ performance requires processing auditory and visual information
from headphones and computer monitors, respectively. On the basis of such
information, operators must make decisions about incoming calls while
speaking to customers and typing on a keyboard. The interactions between
operators and customers are controlled by computer workstations. Dealing
with typical calls through a workstation involves several tasks that exercise a
variety of perceptual-motor and cognitive resources. The speed and accuracy
of an operator in completing each call depends both on the capacities of
these resources and on the workstation’s design. By applying EPIC compu-
tational models to describe and predict this performance, we may help
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improve the design of workstations, the selection of operators, and the regi-
mens of training that they receive.3!

The prospects for such help are good. Empirical studies of operators’ per-
formance have revealed patterns of overt movements and response latencies
consistent with EPIC’s assumptions. From these patterns, it appears that con-
siderable temporal overlap occurs among concurrent perceptual, cognitive, and
motor processes in skilled telephone operators (Gray, John, and Atwood 1993;
John 1990). Thus other substantive and methodological lessons may emerge
through modeling these processes in greater detail (see tables 2.1 and 2.2).

The NYNEX Study

An initial example of our research in this domain focuses on performance by
toll assistance operators (TAOs), who serve customers for telephone calls
charged to third-party billing numbers.

Procedure During such calls, NYNEX investigators have made audiovisual
tapes of representative on-line exchanges between skilled TAOs and cus-
tomers. These tapes contain records of equipment signals, customers’ vocal
inputs, TAOs" vocal outputs, and sequences of manual keypresses produced
by TAOs while they were using standard computer workstations. From the
tapes, the identities and latencies of relevant environmental and behavioral
events can be transcribed for data analysis and theoretical interpretation.32

Each of the taped calls required a TAO to perform several steps: (1) detect
the onset of a tone over a pair of headphones, which signaled that a call from
a prospective customer had arrived at the workstation; (2) look at a com-
puter monitor for alphanumeric information that specified the call’s category;
(3) greet the customer making the call; (4) get the billing number to be
charged for the call; (5) enter this number and other relevant information
into the workstation by typing a series of keystrokes on the computer’s key-
board; (6) look at the monitor to confirm whether the typing had been done
correctly; (7) complete the connection for the call by pressing a call initiation
key; and (8) bid the customer good-bye. The steps performed by the TAOs
were analogous to ones that participants perform repeatedly during PRP and
serial choice-reaction procedures. It therefore might be expected that in at
least some respects, the TAOs' response latencies would resemble those
found under laboratory conditions.

Results For example, figure 2.9 shows results from one representative ex-
change between a TAO and customer. Here observed response latencies of
the TAO’s manual keystrokes (large filled circles on solid curve) are plotted
against their serial positions throughout the exchange. Several features of
these data, which typify third-party billing calls, should be noticed. At the
start of the keystroke sequence (first serial position), the observed response
latencies rise to a maximum and then gradually decrease as the serial positions

Précis to a Unified Theory




3500
——e— (Qbserved

---*-- Predicted: Daring Scheduling

N = Predicted: Cautious Scheduling
2500 . o Rt X
o000 £ v i

Response Latency (ms)

0 u T y T v T v Y g "
1 2 3 4 5 6 7 8 9 10 11 12
Keystroke Serial Position

Figure 2.9 Response latencies as a function of keystroke serial position for a sequence of key-
strokes typed by a TAO during a representative exchange with a customer. Large filled circles
on the solid curve denote observed response latencies. Small filled circles on the dashed curve
denote simulated latencies from an EPIC computational model that used a daring scheduling
strategy. The upper dotted curve denotes simulated latencies from another model that had an
artificial response-selection bottleneck and used a cautious scheduling strategy.

of the keystrokes increase. Consequently, there is a downward latency trend
that looks much like the RT curves found during past studies with the PRP
procedure (e.g., figure 2.2, mean RTs for task 2), suggesting some postpone-
ment of pending processes in order for current processes to be completed.
This postponement presumably was necessary so that the TAO's keystrokes
occurred in correct serial order, just as instructions for the PRP procedure
require that responses for task 2 occur after those for task 1.

The pattern of observed response latencies in figure 2.9 raises intriguing
theoretical questions. What type of task-scheduling strategy is used by
TAO:s to coordinate their performance? Are their strategies consistent with
our previous findings for laboratory studies that involved the PRP proce-
dure? How might the modeling of TAOs’ performance promote the search
for complete veridical UTCs? Can workstation designs be improved on the
basis of insights from such modeling?

EPIC Computational Models of TAOs’ Performance
Some progress toward answering these questions can be made by formulat-

ing EPIC computational models that'account more or less satisfactorily for
data like those shown in figure 2.9.
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Model with cautious scheduling strategy Among the specific models
we have tested thus far is one that uses a cautious scheduling strategy (CSS).
According to this CSS model, which has an artificial response-selection
bottleneck and incorporates the traditional RSB hypothesis, there is no tem-
poral overlap in the response-selection processes whéreby TAOs choose
their successive overt actions. Nor does the CSS model permit temporal
overlap between the overt execution of current eye or hand movements and
the covert preparation of subsequent eye or hand movements. Rather, the
CSS model assumes that serially ordered movements are mediated by strictly
sequential cognitive and motor processes. As a result, the simulated response
latencies produced by the CSS model fit the observed response latencies
poorly.

For example, the upper dotted curve in figure 2.9 comes from the CSS
model, whose simulated response latencies greatly exceed the TAOs’ actual
response latencies (R* =0.04; RMSE = 1,150 msec), especially for key-
strokes in early serial positions. The CSS model fails because, unlike real
TAOs, it does not temporally overlap response-selection or movement-
production processes for successive ocular, manual, and vocal actions. This
failure happened although, in other respects, we formulated the CSS model
to approximate the TAOs’ actual response latencies as best possible despite
its cognitive response-selection bottleneck and cautious scheduling strategy.

Model with daring scheduling strategy Another model we have tested
in this context is one that uses a daring scheduling strategy (DSS). Accord-
ing to this DSS model, which generalizes our previous SRD model from the
PRP procedure (see figure 2.4), the TAOs' successive overt actions are medi-
ated by response-selection and movement-production processes that have
substantial temporal overlap. As a result, the simulated response latencies
that are produced by the DSS model fit the observed response latencies
fairly well. '

For example, the lower dashed curve in figure 2.9 comes from the DSS
model, whose simulated response latencies approximate the TAOs’ actual
response latencies closely at almost every serial position (R? =0.93;
RMSE = 95 msec).3®> Of course, the success of the DSS model would be
expected from our previous findings for the PRP procedure, where tempo-
rally overlapping stimulus-identification, response-selection, and movement-
production processes were demonstrated through the SRD model’s goodness
of fit (e.g., figure 2.2). In the present context, such temporal overlap may occur
again because TAOs have substantial job experience and want to complete
their telephone calls quickly so that customers are satisfied and business
costs stay low.

Implications for interface design It is beyond the scope of this chapter

to discuss at length how designers can improve current computer work-
stations on the basis of results like those shown in figure 2.9. Nevertheless, a
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few general comments that bear on workstation design may be offered here
(see also Gray, John, and Atwood 1993; Kieras, Wood, and Meyer 1997).

From figure 2.9, it appears that TAOs can work on multiple tasks con-
currently at procedural cognitive and perceptual-motor levels. Workstation
interfaces therefore should be designed to exploit this capacity for daring
task scheduling. For example, such scheduling may be facilitated by design-
ing interfaces that interleave stimuli and responses in visual-manual tasks
with those in auditory-vocal tasks. Also beneficial may be displays that pres-
ent visual stimuli for successive tasks at predictable adjacent spatial locations.
Our findings show these heuristic design principles to be prerequisites for
concurrent performance of multiple tasks.

Another related point concerns the prospective role of computational
models in evaluating workstation interfaces. Our results (e.g. figure 2.9)
show that models with a systematic functional architecture for the human
information-processing system can precisely predict major facets of interface
users’ performance (e.g., response speed and accuracy). In the future, as such
models evolve further, a priori predictions may be made with respect to per-
formance achieved both through different interfaces and by different per-
sonal styles of operation. Thus interface and personnel testing could become
both automated and theoretically motivated in ways that save much time
and effort compared to current engineering practices.

Lessons from Modeling of TAOs’ Performance

Given our theoretical research on the performance of TAOs, several more
substantive and methodological lessons may be educed (see tables 2.1 and
2.2).

Substantive lesson 7: “TAOs know the way” As demonstrated by our
previous research with the PRP procedure, the way to perform multiple tasks
efficiently is by daring task scheduling. Such scheduling can occur be-
cause there is no structural cognitive bottleneck through which individual
responses must be selected sequentially. On the contrary, the human cogni-
tive processor—like EPIC's—has the capacity to select responses for multi-
ple tasks concurrently. Nor is there a single bottleneck mechanism through
which every selected response must be produced overtly. Rather, each re-
sponse modality has its own motor processor; while the physical execution
of various movements is under way, these motor processors may prepare the
movement features to anticipate subsequent overt responses. The success of
the present DSS model in characterizing performance during HCI shows that
TAOs also know the way to use such capabilities.

Substantive lesson 8: “What goes around comes around” Comple-

menting substantive lesson 7 is an eighth, correlative one. Through our
modeling of multiple-task performance under both simple laboratory and
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complex real-world conditions, it has become apparent that theoretical con-
clusions reached in one context often may be generalized to other seemingly
quite different contexts. For example, conclusions reached for the PRP pro-
cedure also apply to realistic human-computer interaction, and vice versa.
Such generality should be especially reassuring to seekers of a complete
veridical UTC. »

Substantive lesson 9: “Hand movements obey the Boy Scout motto”
The motto of the Boy Scouts is “Be prepared.” Qur modeling of TAOs' re-
sponse latencies (see figure.2.9) suggests that consistent with this motto,
TAOs are prepared to anticipate their impending hand and eye movements
while current overt responses are under way. It is this anticipatory prepara-
tion that contributes in part to the daring scheduling strategies with which
TAO:s achieve efficient multiple-task performance (Kieras, Wood, and Meyer
1997). For example, such preparation helps increase the rates of manual
typing and visual search (cf. Rumelhart and Norman 1982).

Substantive lesson 10: “Practice makes (nearly) perfect” Consistent
with our prior findings about practice effects in the PRP procedure (see fig-

ure 2.7), the efficient performance of TAOs may stem from their extensive .
experience at fielding various types of telephone calls under conditions that
encourage daring task scheduling. Given this experience, adaptive executive

processes can be evolved to enable substantial flexibility and temporal over-
lap among response selection, movement production, and other operations
for concurrent tasks (cf. Gopher 1993). Persistent dual-task interference,
which sometimes lasts for thousands of trials in the standard PRP procedure,
and which has misled some advocates of the traditional RSB hypothesis (e.g.,
Gottsdanker and Stelmach 1971; Pashler 1993), is merely a deceptive stereo-
typy due to the constant differential task.priorities imposed by the PRP pro-
cedure’s instructions.

Methodological lesson 9: “Unification enables application” For
researchers and practitioners still uncertian about what approach ultimately
may lead to the greatest practical payoffs in experimental psychology, cog-
nitive science, and human-factors engineering, the extensions of our EPIC
computational models from the PRP procedure to the HCI tasks of TAOs
offer a ninth methodological lesson. Efforts toward theoretical unification
and the development of UTCs can facilitate the transfer of data and hypoth-
eses from the laboratory to applied settings. Unification enables application.
Of course, Newell (1990) anticipated this in his previous endorsements for

UTCs, and he was correct, unlike some other less optimistic scientific leaders
in the field.

Methodological lesson 10: “Keep your sunny side up” Unfortunately,
past pessimism has been rather pervasive about applying laboratory data and
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hypotheses to complex realistic situations. For example, consider what the
founder of the Attention and Performance symposium series had to say with
respect to these matters:

Generalizations from the simple to the complex are sometimes straightfor-
wardly wrong. As an example, one cannot build a predictive model about,
say, how people type or play the piano on the basis of the results from re-
search on responses to signals that are presented in rapid succession (the
psychological refractory period; Welford 1967).... the “small” paradigm ...
is merely concerned with artificially created situations, irrelevant to real-life
performance and, hence, to system design.... the general message [therefore]
is that we should aim at delineating the range of application of [micro]
behavioural models rather than searching for the one ultimate [macro] model.
(Sanders 1991, 1006—1008; see also Sanders 1984)

In our opinion, however, such assessments and prescriptions are too pes-
simistic and restrictive. On the contrary, applications of EPIC computational
models jointly to the PRP procedure and HCI demonstrate clearly that data
and theoretical concepts from the former “artificial” laboratory domain can
transfer successfully to the latter “natural” real-world domain. Although
Sanders (1991) merits high respect, he was wrong about the impossibility of
this transfer and about the inadvisability of seeking a practical predictive
(macromodel) UTC. '

Which brings us to our tenth methodological lesson: “Keep your sunny
side up.” Future investigators should be optimistic about both the scientific
and practical prospects for UTCs. There is considerable reason to expect that
further strides toward theoretical unification of basic psychological labora-
tory data and conceptual hypotheses will promote applied human-factors
engineering significantly. In fact, more reason for such optimism is provided
by our next application of EPIC computational models to a second real-
world task domain.

2.6 APPLICATION TO AIRCRAFT COCKPIT OPERATION

A second practical application of EPIC computational models deals with
multiple-task performance during cockpit operations in military aircraft
(Kieras and Meyer 1995, forthcoming; Meyer and Kieras 1996, 1997b). Our
work there has been conducted collaboratively with scientists at the Naval
Research Laboratory (NRL) in Washington, D.C. This collaboration extends
previous laboratory studies of visual-manual tracking and serial choice reac-
tions (e.g., Brickner and Gopher 1981; Gopher 1993; Gopher, Brickner, and
Navon 1982; McLeod 1977; North 1977; Wickens 1976). We have modeled
the performance of personnel who must do visual-manual tracking and
tactical decision making concurrently under realistic cockpit conditions. As
in other related contexts (e.g., HClI by the TAOs of NYNEX), such perfor-
mance relies on executive .cognitive processes to coordinate ocular and
manual motor processes with visual and auditory perceptual processes. By
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applying EPIC computational models to characterize these processes, we
may help improve the design of cockpit control panels, the selection of per-
sonnel, and the regimens of training that they receive. The resulting benefits
could be relevant to performance in other real-world situations as well (e'g.,
concurrent automobile driving and cellular telephoning; Gugerty 1997).

The Naval Research Laboratory Study

The empirical data on which we focus for now were collected at the NRL by
Ballas, Heitmeyer, and Perez (1992).

Procedure During the Ballas, Heitmeyer, and Perez (1992) study, partic-
ipants—including some trained pilots—viewed and responded to a compu-
terized visual display similar to those used in military aircraft cockpits. A
diagram of this display, which provided information for performing two
tasks concurrently, appears in figure 2.10.

On the right side of the display was a window for a visual-manual track-
ing task. In this window were a cursor and a target (iconic airplane) that
moved evasively through space. When participants performed the tracking

task, they had to keep the cursor on target by moving a right-hand joystick

that controlled the cursor’s spatial position. The tracking error (distance be-
tween cursor and target) was measured as a function of the tracking task’s
difficulty.

Meanwhile, on the left side of the display was a window for a tactical
decision task. In this window were iconic blips that appeared sequentially

Figure 2.10 Diagram of the visual display used in the Ballas, Heitmeyer, and Perez (1992)
study of realistic dual-task performance during aircraft cockpit operation. On the left is the win-
dow for a tactical decision task, where the iconic blips represent potentially dangerous objects
that had to be classified as “hostile” or “neutral.” On the right is the window for a visual-manual
tracking task, where the crosshairs of a cursor had to be superimposed on a moving target plane
by manipulating a right-hand joystick.
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at unpredictable times and locations, depicting potentially hazardous objects
(e-g., jet fighters, bombers, and missile sites) whose locations changed gradu-
ally over time. When participants performed the tactical decision task, they
looked at these blips one after another and indicated which were “hostile”
and which were “neutral” by typing on a keyboard with their left hand. Re-
sponse latencies of the keypresses were measured individually for the blips
as a function of their serial positions in the sequence of tactical decisions.34

Performance of the tactical decision and visual-manual tracking tasks
occurred during two types of epoch: (1) single task; and (2) dual task. During
single-task epochs, participants had to perform a relatively hard version of
the tracking task for 2 minutes while disregarding the tactical decision task.
During dual-task epochs, the tactical decision task and a relatively easy ver-
sion of the tracking task both had to be performed concurrently for 2
minutes, with emphasis on making the tactical decisions quickly. Participants
alternated back and forth between successive single-task and dual-task
epochs. Each transition between epochs was signaled by a brief auditory
tone. The sequence of alternating epochs included six single-task and six
dual-task epochs per participant.

Through measurements of participants’ performance after each transition
from a single-task to dual-task epoch, Ballas, Heitmeyer, and Perez (1992)
studied the effects of adaptive automation on aircraft cockpit operations. By
definition, adaptive automation involves two principal elements. First, a com-
puter system takes temporary responsibility for performing one or more
tasks (e.g. tactical decision making), allowing a human operator to concen-
trate on another task (e.g., visual-manual tracking) that has become especially
difficult at the time. Second, when the task on which the operator has been
concentrating becomes easier subsequently, the operator continues perform-
ing it and, in addition, resumes performing the one or more tasks for which
the computer took temporary responsibility. Human-factors engineers hy-
pothesize that adaptive automation can ease the operator’s mental workload
during stressful time periods while maximizing overall performance across a
variety of environmental conditions.

However, adaptive automation also can have short-term detrimental
effects. For a while after the transition from an epoch of single-task perfor-
mance to an epoch of dual-task performance, responses to stimuli in the
recently resumed task (e.g., tactical decision making) may be relatively slow
or inaccurate, manifesting an automation deficit until the operator “gets back,
into the swing of things.” The sources of automation deficits are not well’
understood; they perhaps involve temporary losses of situation awareness
(Garner 1997; Gugerty 1997), transient PRP effects of cautious task schedul-
ing, disruptive phasic changes in operators’ level of arousal, or a combination
of these. Given the design of the Ballas, Heitmeyer, and Perez (1992) study,
we can examine the contributions that some of these sources make. Specifi-
cally, by applying EPIC computational models to account for data from this
study, it is possible to test whether an automation deficit stems partly or
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Figure 2.11 Mean response latencies as a function of blip serial position for the tactical-
decision task in Ballas, Heitmeyer, and Perez 1992. Large filled circles on the solid curve denote
observed latencies. Smaller filled circles on the lower dashed curve denote simulated latencies
from an EPIC computational model that used a daring scheduling strategy. The upper dotted
curve denotes simulated latencies from another model that had an artificial response-selection
bottleneck and used a cautious scheduling strategy. All three latency curves come from a
sequence of tactical decisions made immediately after a period during which only the visual-
manual tracking task had been performed.

wholly from cautious scheduling strategies in the aftermath of transitions
between single-task and dual-task epochs.

Results Some empirical results for making such tests appear in figure
2.11.3% Here observed mean response latencies for the tactical decision task
are shown versus the serial positions in which iconic blips were classified
following the transitions from single-task to dual-task epochs. The observed
latencies tended to be longer at the start of the blip sequence, manifesting an
initial autornation deficit, after which they decreased as the blip serial posi-
tion increased. This latency decrease over serial positions formed a down-
ward curve that embodied a PRP effect, reminiscent of medn RTs for task 2
in the standard PRP procedure (cf. figure 2.2).

EPIC Computational Models of Aircraft Cockpit Operation

With respect to the observed response latencies in figure 2.11, we have
tested two alternative EPIC computational models: one with a cautious
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scheduling strategy (CSS), and one with a daring scheduling strategy (DSS).
Task scheduling in each model was constrained because a large visual angle
(on the order of 20 degrees) separated the centers of the display windows for
the tactical decision and visual-manual tracking tasks (see figure 2.10). This
separation precluded participants from performing more than one task at any
particular moment during the dual-task epochs because their eyes had to
fixate on one window or the other to acquire the detailed visual information
needed to perform a particular task. Thus, under both the CSS and DSS
models, our simulations during dual-task epochs alternated back and forth
between performing the tactical decision task and performing the visual-
manual tracking task, mediated by top-level executive processes that per-
mitted the gaze of EPIC's eyes to be shifted between the left and right
display windows. '

However, the two models differed considerably in their assumptions about
the processes that performed the tactical decision task while it was under
way. Under the CSS model, there was an intermediate-level executive pro-
cess that used a cautious scheduling strategy with little temporal overlap
among the processes for making tactical decisions about the individual iconic
blips in this task’s display window. By contrast, under the DSS model, the
intermediate-level executive process for the tactical decision task used a
daring scheduling strategy, whereby more temporal overlap occurred among
the processes for making tactical decisions about individual blips.

Cautious scheduling strategy model Specifically, we programmed the
CSS model with an artificial bottleneck that precluded manual keypress
responses for multiple iconic blips from being selected concurrently while
performance of the tactical decision task was under way. Also, under the CSS
model, processes that chose the next blip to be classified and that shifted
EPIC’s eyes to fixate on it for stimulus identification could not begin until
after manual responses for the currently attended blip had been selected and
produced. As a result, the upper dotted curve of simulated mean response
latencies in figure 2.11 was produced for the tactical decision task during
dual-task epochs.

The CSS model’s simulated latencies substantially exceeded the observed
latencies (R? = 0.869; RMSE = 439 msec), especially for blips in early serial
positions. This overshoot happened even though subject to ancillary archi-
tectural constraints, the CSS model was programmed to make the best possi-

ble approximation of the observed latencies. Thus our simulations suggest

that there is no plausible way in which real participants could have per-
formed the tactical decision task as well as they did if their performance had
been limited by a structural response-selection bottleneck or a cautious
scheduling strategy.

Daring scheduling strategy model In contrast, the DSS model and its
daring scheduling strategy were programmed such that no response-selection
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bottlenecks precluded manual keypress responses for multiple iconic blips
from being selected concurrently while performance of the tactical decision
task was under way. Also, under the DSS model, processes that chose the
next blip to be classified and that shifted EPIC’s eyes to fixate on it for stim-
ulus identification began before movement production for the previously
attended blip had finished. As a result, the lower dashed curve of simulated
mean response latencies in figure 2.11 was produced for the tactical decision
task. Here the simulated and observed response latencies are fairly close at
almost every serial position (R* = 0.975; RMSE = 90 msec). The DSS
model’s goodness of fit in figure 2.11 is similar to what we obtained before
for the PRP procedure (see figure 2.2) and for TAOs' performance in HCI
(see figure 2.9). Furthermore, this model accounts fairly well for participants’
degrees of error in the visual-manual tracking task during both single-task
and dual-task epochs. It therefore appears that EPIC may be applied for
characterizing and predicting multiple-task performance across various real-
istic task domains.

Implications for design of cockpit control panels Results from the
present application of our EPIC computational models suggest that automa-
tion deficits in aircraft cockpit operations are not caused simply by cautious
task scheduling after transitions from single-task to dual-task epochs. Auto-
mation deficits may instead occur because the visual displays for suspended
tasks do not sufficiently sustain situation awareness during single-task epochs;
operators may need extra time at the start of dual-task epochs to create new
mental representations of the current environment for formerly suspended
tasks.

If so, our results have some obvious implications for designing cockpit
control panels:

+ Distances between the display windows of current and temporarily sus-
pended tasks should be minimized, while providing adequate discriminability
among visual stimuli, as in advanced “head up” displays;

- Supplementary perceptual aids that help sustain situation awareness for

suspended tasks should be provided;

* At the start of dual-task epochs, special visual cues should be available to
orient operators’ attention automatically toward the most important stimuli
for resuming formerly suspended tasks.3¢

Perhaps implementing such guidelines in combination will enhance the util-
ity of semiautomated aircraft cockpits.

Lessons from Modeling Aircraft Cockpit Operation
More generally, theoretical and practical benefits may also accrue from other

substantive and methodological lessons that modeling of aircraft cockpit
operation has taught us.
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Substantive Lesson 11: “Daring task scheduling is ‘the right stuff’”
Our eleventh substantive lesson concerns the nature of “the right stuff”
(Wolfe 1979). According to aviation lore, “the right stuff” is what test pilots,
“top gun” aviators, and astronauts must have to survive hazardous flight
operations. The success of the present DSS model suggests that at least part
of “the right stuff” involves an ability to use daring scheduling strategies for
concurrent performance of perceptual-motor and cognitive tasks under
duress. Without such task scheduling, test pilots, top guns, and astronauts
could not survive the crises they encounter, because it would be impossible
for them to complete all of their crucial tasks before fatal deadlines have
passed. That pilots like the legendary Chuck Yeager have survived to a ripe
old age weighs heavily against the traditional RSB hypothesis (cf. Yeager
and Janos 1985).

Substantive lesson 12: “The eyes have it” Due to the complex tasks
performed in rapid aircraft cockpit operations, the daring scheduling strat-
egies used for them presumably involve temporal overlap among a panoply
of mental and physical processes, including ocular response selection, saccadic
eye-movement execution, visual stimulus encoding, manual response selec-
tion, and finger keypressing. Specifically, our successful DSS model implies
that ocular response selection and saccadic eye-movement execution must
overlap these other processes in order to account for observed response
latencies; otherwise, simulated latencies would far exceed observed latencies.
This implication leads directly to our twelvth substantive lesson: “The eyes
have it,” where “it” is “the right stuff” associated with daring task schedul-
ing. Contrary to claims by some advocates of the traditional RSB hypothesis
(e.g., Pashler, Carrier, and Hoffman 1993), we have found no evidence that a
structural response-selection bottleneck constrains ocular response selection
for voluntary saccadic eye movements.

Methodological lesson 11: “If you've seen one, you've seen ‘em all”
Given the similarity between what we have found in modeling aircraft cock-
pit operation and other related cases of multiple-task performance (e.g., HCI
and PRP procedure), an eleventh methodological lesson now becomes ap-
parent. Having seen how multiple-task performance is achieved under one
set of circumstances may provide deep insights into how it is achieved under
many other circumstances. Methodological lesson 11 therefore constitutes a
welcome generalization of our substantive lesson 8 (“What goes around, |
comes around”) and substantive lesson 12 (“The eyes have it”). Seekers of
theoretical unification should find this modicum of generality encouraging
because it is an important prerequisite to formulating complete veridical

UTCs.

Substantive lesson 13: “Covert visual attention shifts are like poor
Yorick” Nevertheless, there may be a few exceptions to some of the pre-
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vious lessons. In particular, our modeling of aircraft cockpit operation sug-
gests that perhaps substantive lesson 8 and methodological lesson 11 do not
hold with respect to covert shifts of visual attention. By definition, covert
visual attention shifts supposedly take place in the “mind’s eye” (Jonides
1980, 1981); they entail mentally redirecting the focus of attention from one
spatial location to another without concomitant overt eye movements. Such
attention shifting has been studied extensively in artifical laboratory experi-
ments, and substantial evidence suggests that it may influence visual infor-
mation processing there (Johnston and Dark 1986; Mangun, Hillyard, and
Luck 1993; Posner 1980). However, in the DSS model for concurrent tactical
decision making and visual-manual tracking, no covert visual attention shifts
contributed to its daring scheduling strategy. This model assumed simply
that shifts of visual attention took place through overt saccadic eye move-
ments from one relevant stimulus location to the next. Accounting for
observed response latencies and tracking errors did not require covert
attention shifts.

The lesson from this is that under some—perhaps even most—real-world
circumstances, covert visual attention shifts are like poor Yorick, the de-
ceased king’s jester in Hamlet. Although experimental psychologists have
known them well, such attention shifts may play little if any role for present -
practical purposes. Instead, perhaps what matter more are the ocular-motor
processes whereby overt saccadic eye movements take place to shift the
eyes’ foveas and gaze between locations.3”

Methodological lesson 12: “Be thankful for the Second Golden
Rule” Mandates from organizations such as NYNEX and the U.S. Office of
Naval Research (ONR), the financial sponsors of our work, also have taught
us that researchers should be thankful for the “Second Golden Rule,” namely,
“Those who have the gold make the rules.” For us, this has meant having to
focus on solving our sponsors’ practical problems. As a result, our research
has yielded instructive insights about major empirical phenomena and theo-
retical processes in both “artificial” laboratory and “natural” real-world con-
texts that would otherwise have gone unnoticed. We therefore concur with
Newell (1990) that the press of practical applications can have substantial
benefits to basic science.

2.7 CONCLUSION

Reviewing the lessons that our computational modeling of human multiple-
task performance has taught us, we see that they fall into several sub-
categories. Among the methodological lessons (see table 2.1), some concern
attitudes and intellectual orientations that theorists should adopt while seek-
ing a practical unified theory of cognition and action (e.g., methodological
lessons 1, 2, 3, 5, 10, and 12). Others are warnings about perilous pitfalls
along the way to a complete veridical UTC (e.g,, methodological lessons 6
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and 7). In compensation for heeding such warnings and maintaining proper
attitude, additional methodological lessons offer promissory notes about
major benefits that may accrue (e.g., methodological lessons 4, 8, 9, and 11).
We hope that together, these lessons will both encourage and guide
researchers toward successful unification in human-performance theory.

Also relevant to theoretical unification are the concomitant substantive
lessons (see table 2.2). Among them, some describe basic characteristics of
the human information-processing system that have become salient through
our work and that must be incorporated in the functional architecture of a
complete veridical UTC (e.g., substantive lessons 1, 2, 6, and 12). Others
summarize important facts about people’s preferred task-scheduling strat-
egies (e.g., substantive lessons 3, 4, 7, 8, 9, 11, and 13). Given such facts, it
may be possible to improve multiple-task performance considerably with
systematic training (substantive lessons 5 and 10). The combined thrust of
these substantive lessons reiterates some of Newell's original points (1973a,
1990): practical predictive theories must take into account “hardware proper-
ties” of human information processing, environmental task demands, personal
goals based on these demands, and preferred strategies for goal attainment.
By doing so, future computational models of multiple-task performance may
realize the benefits anticipated in our methodological lessons.

Meanwhile, important questions remain with respect to the present proj-
ect. For example, how close do our EPIC architecture and computational
models currently come to satisfying established criteria for what a successful
UTC should be? In which directions should future research go to improve
EPIC and to make it a more complete veridical theory? Available space does
not permit extensive answers here, but we may offer a few partial ones.

Evaluation of EPIC

Admittedly, EPIC lacks features essential to a complete veridical UTC; these
omissions are apparent from evaluating EPIC with respect to requisite criteria
proposed by Newell (1990, 1992; cf. Seifert and Shafto 1994). According to
Newell, a complete veridical UTC must ultimately yield accurate predictive
computational models for all of the following functions: (1) comprehending
and producing natural language; (2) storing and using large amounts of
knowledge; (3) learning from experience; (4) dealing with emotion and moti-
vation; (5) solving problems; (6) behaving creatively; and (7) interacting so-
cially. If so, EPIC and the models associated with it have a long way to go—
they satisfy none of these criteria yet.

They do, however, satisfy some of Newell's other requisite criteria (1990,
1992), namely: (8) having a precise and stable architecture; (9) embodying
detailed perceptual and motor mechanisms; (10) producing rational, adaptive
goal-directed behavior; (11) finishing tasks in real time; and (12) being
potentially realizable as a neural system. For example, among EPIC’s note-
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worthy features are its motor processors for the manual and ocular response
modalities, and its enablement of efficient executive cognitive processes for
task scheduling. Moreover, many of EPIC's basic assumptions (e.g., those
about distributed asynchronous parallel information processing) are consis-
tent with human brain anatomy and neurophysiology (Kieras and Meyer
forthcoming; Meyer and Kieras 1997b; cf. Newell 1990). Granted these vir-
tues, we believe EPIC merits future research.

Directions for Future Research

- The preceding evaluation suggests several attractive directions for future

research with EPIC and new computational models based on it.

Specification of subdivisions in working memory In particular, our
future research may specify more precisely the capacities, durations, and
interconnections for perceptual and motor subdivisions of EPIC’s working
memory (Kieras et al, forthcoming). Such specifications can build on pre-
vious studies of how working memory contributes to various cognitive pro-
cesses that underlie general intelligence (e.g., Baddeley 1986; Carpenter and
Just 1989; Carpenter, Just, and Shell 1990; Chase and Ericsson 1983; Dane-
man and Carpenter 1980; Gilhooly et al. 1993; Kyllonen and Christal 1990).
This advance will help EPIC support computational models of reasoning,
problem solving, and language processes, and will also enable us to formu-
late more accurate measures of mental workload, whose current practical
indicators leave much to be desired (cf. Gopher and Donchin 1986; Moray
1979; O'Donnel and Eggemeier 1986; Wierwille and Connor 1983; Willeges
and Wierwille 1979).

Elaboration of declarative long-term memory Another productive ex-
tension will involve elaborating EPIC’s long-term memory for declarative
knowledge. Thus far, EPIC computational models have used only procedural
and declarative knowledge in working memory. However, EPIC’s long-term
memory could store large amounts of organized propositional declarative
knowledge as well. Realizing this potential would move EPIC further toward
supporting detailed models of language processing; it also would help set
the stage for a treatment of skill acquisition, which entails compiling proce-
dural knowledge on the basis of task instructions stored as propositional
declarative knowledge in long-term memory (Anderson 1982; Bovair and
Kieras 1991; Bovair, Kieras, and Polson 1990; Fitts 1964).

Treatment of skill acquisition We anticipate treating skill acquisition
thoroughly in the context of EPIC. If previous conceptions about perceptual-
motor and cognitive skill are correct, then people may pass through several
distinct acquisition phases as they become expert performers. For example,
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Anderson (1982) has proposed an initial declarative stage of skill acquisition
followed by several later procedural substages (cf. Fitts 1964). During the
declarative stage, performance is presumably mediated by propositional
knowledge about how a task should be performed. Using such knowledge
apparently requires slow controlled verbal interpretive processes that lead
indirectly to overt action. Nevertheless, through practice, propositional
knowledge about proper task performance can be converted to executable
procedures whereby tasks are performed directly with sets of production
rules. The compilation and gradual refinement of these rules characterize
successive substages of procedural learning. Because EPIC has both a long-
term memory for declarative knowledge and a production-system formalism
for procedural knowledge, it provides natural bases with which to character-
ize various stages of skill acquisition. Learning algorithms such as those pro-
posed by Anderson (1982) and others (e.g., Bovair and Kieras 1991; Bovair,
Kieras, and Polson 1990) may be used by EPIC's cognitive processor, en-
abling the compilation and refinement of production rules for performing
multiple as well as single tasks.

As part of this attractive prospect, an important objective will entail
describing and predicting how flexible strategies of task scheduling are
acquired and incorporated into evolving executive processes. That. such ac-
quisition occurs and that it markedly influences eventual performance levels
has been demonstrated already (e.g., Gopher 1993; Lauber et al. 1994; Meyer
et al. 1995; Schumacher et al. 1996, forthcoming). We know specifically that
the efficacy and rate of learning depend on what types of intermediate train-
ing are provided. Thus an important next step will involve specifying the
learning algorithms through which various training protocols promote both
optimized temporal overlap among task processes and efficient allocation of
limited perceptual-motor resources.

Incorporation of energetic mechanisms To make EPIC computational
models more realistic, we also eventually must endow them with “energetic”
mechanisms. Drugs, sleep deprivation, emotional arousal, and other psycho-
physiological variables can significantly affect rapid human performance (see,
for example, Beatty 1982; Broadbent 1971; Frowein 1981). Some ideas that
are relevant to how these influences would fit within EPIC have been sug-
gested by Gopher (1986), Sanders (1983), and others (Hockey, Gaillard, and
Coles 1986). Different factors related to mental and physical “energetics”
might selectively modulate the estimated magnitudes of EPIC parameters
such as the perceptual processors’ stimulus detection and identification times,
the cognitive processor’s cycle duration, the working memory's information
decay times, and the motor processors’ movement-production times. It will
be exciting to test whether “energetic” effects are interpretable and predict-
able from the same perspective that has let us account for multiple-task per-
formance in the PRP procedure, HCI, and aircraft cockpit operation.
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Final Lessons

With these future research directions before us, we leave behind two final
lessons that bear on the search for a complete veridical UTC.

Methodological lesson 13: “Psychological science can (and will) be
" As the intellectual approach taken by the Nobel laureate physicist,
Richard Feynman, has amply demonstrated, striving toward theoretical unifi-
cation need not entail “all work and no play” (Feynman 1985; Seifert et al.
1994). Instead, psychological science can (and will) be fun, because prospec-
tive UTCs inspire curiosity and excitement while leading researchers
through surprising twists and turns along the path of discovery. If the
lessons we have outlined in this chapter (see tables 2.1 and 2.2) convey some
of these benefits, then our principal objective will have been accomplished.

fun

Methodological lesson 14: “There’s nothing more practical than a
good theory” This is the keynote on which we began the present chapter
and on which we end for now.
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1. The original form of this proclamation is attributable to Lewin (1951).

2. One impressive illustration of the abundant quantitative regularities now available from
experimental psychology has been provided by Salthouse (1986), who tabulated twenty-nine
systematic phenomena discovered about transcription typing. Presumably, these stem from
interactive properties of skilled typists’ perception, attention, memory, and motor control pro-
cesses. Yet the exact nature of these interactions and the processes that mediate them remains to
be elucidated (cf. John 1988; Rumelhart and Norman 1982). If there are on the order of thirty
known regularities relevant to transcription typing alone, then it is easy to imagine that research
on human performance already has found 3,000 or more regularities overall.

3. Newell’s teachings (1973a, 1990, 1992) have many interesting parallels with those of the
Buddha. For example, according to the Buddha, the way to escape perpetual mental suffering is
to contemplate and unify various basic inner psychological and outer environmental realms
(Bukkyo Dendo Kyokai 1985). Similarly, according to Newell, release from intellectual turmoil in
experimental psychology and cognitive science will come through deep theoretical contempla-
tion and unification.
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4. Applied cognitive science must find a way to sail successfully between what Sanders (1991)
called the Scylla of experimental psychology and the Charybdis of human-factors engineering.
In his view, experimental psychology has formed a massive Scylla of relatively simple labora-
tory phenomena that are easy to measure but that also are separate from the “richness of real-
ity,” whereas human-factors engineering finds itself caught in the treacherous Charybdis of
complex real-life phenomena that are difficult to analyze (Sanders 1991, 997). The development
of UTCs can help us chart a course through the gap that separates these two perils.

5. For example, consider circumstances that involve Fitts” law (1954), under which the mean du-
ration of rapid aimed movements to a target region is a logarithmic function of the target dis-
tance divided by the target width. In numerous applied settings where aimed movements must
be made, Fitts’ law prevails (Meyer et al. 1988). This prevalence suggests that Fitts’ law is a fun-
damental regularity whose underlying mechanisms should play a role as part of any complete
veridical UTC (cf. Newell 1990, 3-6).

6. Although we do not discuss them here, there are also other major harbingers of UTCs (e.g..
Just and Carpenter 1987; Norman and Shallice 1986; Schneider and Detweiler 1987). More con-
sideration of these may be found elsewhere (Meyer and Kieras 1997a; Newell 1990).

7. By informal convention, an acceptably accurate engineering approximation is one in which
the theoretically calculated values deviate from the observed values by no more than 10% of the
observed values’” magnitudes (Card, Moran, and Newell 1983; Newell 1990).

8. According to the power law of practice, the reaction time (RT) to complete one trial of a task
is a power function whose domain is the number (N) of prior practice trials on the task and
whose exponent is a negative constant. As a result, log RT would be a negatively sloped linear
function of log N (Anderson 1983; Fitts 1964; Newell 1990).

9. The lower part of the cognitive band includes two sublevels of information processing: delib-
erate acts, with durations on the order of 100 msec; and simple operations (short sequences of de-
liberate acts used to perform simple tasks), with total durations on the order of 1 sec (Newell
1990). For example, under our EPIC computational models, “firing” a production rule during a
typical choice-reaction task constitutes a deliberate act, and using a sequence of such rules to
perform the whole task constitutes a simple operation. The part of the cognitive band directly
above these two sublevels consists of composed operations (sequences of simple operations used
to perform complex tasks) with total durations on the order of 10 sec. For example, skilled play-
ing of rapid-transit chess presumably entails composed operations.

10. On the overall time scale of human action, there are also other activity bands. Below the
cognitive band is the biological band, a physical substrate for the functional architecture of people’s
information-processing system. The biological band has at least three sublevels: organelle, neu-
ron, and neural circuit. At the neural-circuit sublevel, activities take on the order of 10 msec to
complete, which in turn yields the aforementioned approximate 100 msec durations of deliberate
acts (Newell 1990; see also note 9). Connectionist network models provide abstract character-
izations of the neural-circuit sublevel (Rumelhart and McClelland 1986). Above the cognitive
band are the rational and social bands. The rational band involves complex problem-solving
activities with durations on the order of minutes or more. SOAR is especially tailored to charac-
terize information processing in the rational band. Farther upscale, the social band involves the
long-term pursuit of people’s life goals. No prospective UTC yet deals seriously with the social
band. Instead, on the basis of Newell's analyses and arguments (1990), the cognitive band is
most important for present purposes.

11. For example, in Pashler (1984, experiment 1), “the subject was instructed to respond as
quickly as possible to both tasks in the two-task blocks, with the restriction that the first stimulus
must be responded to before the second” {p. 365). Similarly, in Pashler and Johnston (1989, 30),
subjects were told that they “should respond as rapidly as possible to the first stimulus,” and “the
experimenter emphasized the importance of making the first response as promptly as possible.”
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12. The emulation of a bottleneck is required because without one, secondary-task responses
might be selected and produced before primary-task responses, violating the instructions of the
PRP procedure (Meyer and Kieras 1997a). According to this logic, the function of the emulated
bottleneck is to delay secondary-responses enough that out-of-order responding never happens.

13. At present, the executive and task production rules for EPIC computational models are
placed in procedural memory by the theorists who use this simulation system (e.g.. Meyer and
Kieras 1997a,b). Unlike some other architectures (cf. Anderson 1983; Laird, Newell, and Rosen-
bloom 1987), EPIC does not yet have the capability to acquire perceptual-motor and cognitive
skills through on-line procedural-learning algorithms, although we may augment EPIC with such
capabilities in future research,

14. The mean cognitive-processor cycle duration is one of EPIC’s temporal parameters that
remains the same across different simulations. We set it to 50 msec on both theoretical and em.-
pirical grounds. Newell (1990) has argued that theoretically, the time taken for testing the con-
ditions and executing the actions of generic production rules like those used here should be on
the order of 50 msec per rule, given known temporal constraints on the neural-network circuits
whereby such operations occur at the biological level (see also note 10). Furthermore, Kris-
tofferson (1967) has reported empirical results about perceptual successiveness judgments and
choice RTs that suggest a mean cognitive-processor cycle duration of about 50 msec. This value
is approximately the same as the alpha rhythm’s mean zero-crossing interval in EEG records of
brainwave activity (Callaway and Yeager 1960; Kristofferson 1967; Ray 1990).

15. Under some circumstances, responses also may be produced by a motor processor on the
basis of sensory information sent directly to it by a perceptual processor via a pathway that
bypasses the cognitive processor and involves an automatic “privileged loop” (cf. McLeod and
Posner 1984).

16. Reliable effects on response selection for task 2 presumably were caused by Hawkins,
Rodriguez, and Reicher's manipulation of S-R numerosity. To infer that such effects occurred
there is highly plausible from results of previous research with S-R numerosity manipulations
(Schumacher et al. forthcoming). For example, Sternberg (1969) found large reliable interactions
between the effects on mean RTs of S-R numerosity and S-R compatibility, a prototypical factor
that is believed to affect response selection. By contrast, Sternberg (1969) found relatively little
interaction between S-R numerosity and stimulus-legibility effects, suggesting that S-R numer-
osity affects stimulus encoding hardly at all. These and additional related data imply that most, if
not all, of the S-R numerosity effect on mean RTs occurs during response selection rather than
other stages of processing (Brainard et al. 1962; Broadbent and Gregory 1965; Gottsdanker
1969; Sanders 1980; Theios 1973).

17. In some respects, the SRD model resembles the hybrid structural-bottleneck model of De
Jong (1993), who proposed that both response-selection and movement-production bottlenecks
mediate multiple-task performance, integrating hypotheses advocated by Kantowitz (1974),
Keele (1973), Pashler (1984, 1994a), Welford (1967, 1980), and others. Similarly, to coordinate
progress on tasks 1 and 2 of the PRP procedure, the executive process of the SRD model uses
both post-response selection and pre—response selection lockout points for task 2. However,
these lockout points are optional, flexible, and adaptively controlled, whereas the bottlenecks of
De Jong’s hybrid model (1993) are immutable and insensitive to changing task requirements.

18. Thus, by definition, the task-scheduling strategy used in the SRD model (figure 2.4) is daring.

19. Here task 1 involved four rather than two alternative S-R pairs (cf. Hawkins, Rodriguez, and
Reicher 1979).

20. Because Lauber et al. (1994, experiment 2) increased the difficulty of task 1, the chances that
responses for task 2 would occur prematurely before those for task 1 were potentially greater
unless their participants used more cautious task scheduling than did those in Hawkins, Rodri-
guez, and Reicher (1979).
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21. For each participant in figure 2.5, the mean RTs for task 1 averaged about 500 msec and
were not affected much by either SOA or task 2 difficulty.

22. Insofar as we know, few advocates of the traditional RSB hypothesis have checked for
systematic individual differences in task-scheduling strategies. Presumably, this omission has
occurred because, according to the RSB hypothesis, all participants have an immutable structural
response-selection bottleneck, and so their patterns of PRP curves would not be expected to
differ much from each other.

23. To support this conclusion further, one may compare the light vertical bars (predicted.inter-
actions) and dark vertical bars (observed interactions) in figure 2.6B. Derivations described else-
where (Meyer et al. 1995; Meyer and Kieras 1997b) yielded the light vertical bars, which assume
that every participant had a response-selection bottleneck. Given this assumption, the light
vertical bars should approximate the dark bars closely, but they do not. Seven-eighths of the
dark vertical bars in figure 2.6B are longer than the light vertical bars paired with them,
embodying consistently more extreme interactions than the traditional RSB hypothesis predicts.
Specifically, it appears that figure 2.6B contains at least two distinct subgroups of participants,
some of whom (e.g., participant 1) produced significantly negative interactions between the
effects of SOA and response-selection difficulty on mean RTs for task 2, and others of whom
(e.g., participant 8) produced significantly positive interactions. This supports our claim that task
scheduling involves adaptive executive control and that, because of systematic personal prefer-
ences, some but not all participants may adopt daring scheduling strategies even when task 1 is
relatively hard.

24. Standard statistical tests demonstrating additive factor effects in averaged group PRP curves
(e.g., McCann and Johnston 1992; Pashler 1984; Pashler and Johnston 1989) do not surmount
the problems caused by averaging across participants. The power of these tests is greatly weak-
ened by systematic individual differences in patterns of PRP curves because these differences
inflate the subject-by-treatment interactions that serve as error variance in the denominators of
accompanying f and F statistics (Hays 1963). Such inflation may explain why some researchers
have found seemingly unreliable interactions between the effects of SOA and other factors that
influence response selection for task 2 of the PRP procedure. For example, McCann and Johnston
(1992, experiment 1) reported F(3,69) = 1.94 in the case of a positive interaction between
SOA and S-R compatibility effects on mean RTs for task 2. This interaction was marginal
(.05 < p < .10 for a unidirectional hypothesis test), but might have been much more reliable in
the absence of underlying systematic individual differences, thereby further disconfirming the
traditional RSB hypothesis.

25. The participants here were college students. Whether substantive lesson $ likewise applies
to older adults remains an important question for future work. Some initial research suggests
that fortunately the answer may be yes (Glass et al. 1997; Kramer et al, chap. 22, this volume).

26. The results shown in figure 2.6 came from participants’ third session of testing with a hard
primary task and easy or hard secondary task in the standard PRP procedure.

27. The corresponding mean RTs for task 1 did not vary much as a function of SOA or
response-selection difficulty in task 2; on average, they equaled 485 msec and 487 msec when

task 2 was easy and hard, respectively. These values are close to those found by Lauber et al.

(1994, experiment 2) during their previous experiment with a hard primary task in the PRP pro-
cedure. Administration of initial variable-priority training seems not to have influenced partic-
ipants’ performance of task 1 much at all.

28. In contrast, some advocates of the traditional RSB hypothesis have based their support on
the persistence of PRP effects (dual-task interference) throughout many thousands of practice
trials under the standard PRP procedure (Gottsdanker and Stelmach 1971; Pashler 1993). Such
persistence is not, however, antithetical to our present conclusions. As mentioned already, the
instructions about task priorities for the standard PRP procedure typically require that task 1 re-
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ceive more emphasis than task 2 and that responses for task 1 be produced before those for task
2. Given such instructions, which hold throughout practice, some PRP effect always must occur
after short SOAs no matter how practice changes participants’ task scheduling strategies in other
respects. Thus, as before, methodological lesson 6 (“Be careful what you ask for; you might
actually get it”) applies here as well.

29. For the auditory-vocal task, each stimulus was either a 220, 880, or 3,520 Hz tone, to which
participants responded by saying either the word “one,” “two,” or “three,” respectively. For the
visual-manual task, each stimulus was the capital letter “O” displayed directly over the left, mid-
dle, or right dash in a horizontal row, to which participants responded by pressing a key with
either the index, middle, or ring finger of the right hand, respectively. These tasks were similar
to those used by Pashler (1990) and others (e.g.. McCann and Johnston 1992) in testing the tra-
ditional RSB hypothesis.

30. Methodological lesson 6 also is reinforced by another result from the experiment of Schu-
macher et al. (1997). After our evidence of virtually perfect time-sharing (see figure 2.8) had been
collected, we tested these same participants under the standard PRP procedure, asking them to
treat the auditory-vocal task as primary and the visual-manual task as secondary. This yielded
mean RTs for task 1 that remained short and constant regardless of the SOA, but mean RTs for
task 2 increased when the SOA was short, substantially exceeding those shown in figure 2.8.
The latter increase would be expected from methodological lesson 6 because the PRP procedure
encourages participants to produce their responses for task 2 after those for task 1, which
requires temporary postponement of progress on task 2 after short SOAs.

31. The benefits from the application of EPIC computational models could be substantial to
NYNEX. For example, an improvement in the design of an interface that reduces the average
completion time per call by 1 sec may decrease equipment and personnel costs on the order of a
million dollars or more per year.

32. We thank Michael Atwood of the NYNEX Science and Technology Center for providing
us with audiovisual tapes of TAOs' on-line performance. Helpful comments by Bonnie John
and Rory Stuart about our analyses and modeling of this performance also are gratefully
acknowledged.

33. The grand mean of the observed response latencies in figure 2.9 is about 1,100 msec. Rela-
tive to this baseline, the RMSE of 95 msec constitutes an 8.5% error of prediction by the DSS
model. When working in realistic domains, engineers typically consider theoretical models prac-
tically useful when they predict observed numerical values with less than 10% margins of error
(Card, Moran, and Newell 1983). The DSS model satisfies this criterion, whereas the CSS model
does not. Furthermore, the fit of the DSS model seems satisfactory because the response laten-
cies in figure 2.9 come from single keystrokes. The goodness of fit here is about what one might
expect if the model were correct, but each response latency also contained an approximately
10% contribution from perceptual and motor “noise,” which would be typical of practiced per-
formers such as TAO:s.

34. The response latency for a blip equaled the amount of time between (1) when the color of
the blip changed from black to red, blue, or amber; and (2) when a key was pressed to indicate
the blip’s hostility status. Red blips had to be classified as “hostile”; blue blips had to be classified
as “neutral”; amber blips had to be classified as either “hostile” or “neutral” in terms of their po-
sition, direction, or speed of movement on the display screen.

35. We thank James Ballas and his colleagues at the Naval Research Laboratory for generously
providing us with their data and other helpful information.

36. For example, in the display of the Ballas, Heitmeyer, and Perez (1992) tactical decision task,
the iconic blip that should get classified first after the start of each dual-task epoch could be
blinked rapidly on and off, thereby orienting the operator’s attention to it and helping the oper-
ator make a more rapid sequence of tactical decisions.
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37. Experimental psychologists who are familiar with Hamlet as well as attention theory and
practical applications to human-factors engineering have assured us that substantive lesson 14 is
indeed apt (N. Moray, personal communication, July 12, 1996).
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